-
-
Save viirya/1558006 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Basic text search with relevancy for MongoDB. | |
# See http://blog.tty.nl/2010/02/08/simple-ranked-text-search-for-mongodb/ | |
# Copythingie 2010 - Ward Bekker - [email protected] | |
#create (or empty) a docs collection | |
doc_col = MongoMapper.connection.db('example_db').collection('docs') | |
doc_col.remove({}) | |
#add some sample data | |
doc_col.insert({ "txt" => "it is what it is"}) | |
doc_col.insert({ "txt" => "what is it"}) | |
doc_col.insert({ "txt" => "it is a banana"}) | |
#The invix creation map function. Splits the texts in individual words | |
map_index =<<JS | |
function() { | |
var words = this.txt.split(' '); | |
for ( var i=0; i<words.length; i++ ) { | |
emit(words[i], { docs: [this._id] }); | |
} | |
} | |
JS | |
# Groups the doc id's for every unique word | |
reduce_index =<<JS | |
function(key, values) { | |
var docs = []; | |
values.forEach ( function(val) { docs = docs.concat(val.docs); }) | |
return { docs: docs }; | |
} | |
JS | |
# Every document counts as one | |
map_relevance =<<JS | |
function() { | |
for ( var i=0; i< this.value.docs.length; i++ ) { | |
emit(this.value.docs[i], { count: 1 }); | |
} | |
} | |
JS | |
# And calculate the amount of occurrences for every unique document id | |
reduce_relevance=<<JS | |
function(key, values) { | |
var sum = 0; | |
values.forEach ( function(val) { sum += val.count; }) | |
return { count: sum }; | |
} | |
JS | |
#calculate the inverted index | |
invix_col = doc_col.map_reduce(map_index, reduce_index) | |
#calculate the # occcurances of each searchterm | |
query = ["what", "is", "it"] | |
ranked_result = invix_col.map_reduce(map_relevance, reduce_relevance, { :query => { "_id" => { "$in" => query} } } ) | |
#output the results, most relevant on top | |
ranked_result.find().sort("count", :desc).each do |result| | |
puts "document with id #{result["_id"]} has rank #{result["value"]["count"]} : #{doc_col.find_one("_id" => result["_id"]).inspect}" | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment