Last active
January 26, 2017 04:23
-
-
Save vijayanandrp/4da06e9c9368c19905027a07cbfcd118 to your computer and use it in GitHub Desktop.
Pandas - Data Frame - examples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Formatting | |
workbook = writer.book | |
total_fmt = workbook.add_format({'align': 'right', 'bold': False, 'bottom': 0}) | |
total_fmt1 = workbook.add_format({'align': 'left', 'bold': False, 'bottom': 0}) | |
key_worksheet = writer.sheets[key] | |
key_worksheet.set_zoom(80) | |
key_worksheet.set_column('A:A', 14, total_fmt) | |
key_worksheet.set_column('B:B', 40, total_fmt) | |
key_worksheet.set_column('C:C', 45, total_fmt) | |
key_worksheet.set_column('D:D', 35, total_fmt) | |
key_worksheet.set_column('E:E', 70, total_fmt1) | |
key_worksheet.set_column('F:F', 110, total_fmt1) | |
key_worksheet.set_column('G:G', 22, total_fmt) | |
key_worksheet.set_column('H:H', 15, total_fmt) | |
key_worksheet.set_column('I:I', 30, total_fmt) | |
key_worksheet.set_column('J:J', 25, total_fmt) | |
key_worksheet.set_column('K:K', 25, total_fmt) | |
# sheet 2 formating | |
role_details_worksheet = writer.sheets['Role Details'] | |
# Zoom | |
role_details_worksheet.set_zoom(80) | |
# Apply formatting to the column | |
role_details_worksheet.set_column('A:A', 30, total_fmt) | |
role_details_worksheet.set_column('B:B', 40, total_fmt) | |
role_details_worksheet.set_column('C:C', 15, total_fmt) | |
role_details_worksheet.set_column('D:D', 35, total_fmt) | |
role_details_worksheet.set_column('E:E', 47, total_fmt) | |
role_details_worksheet.set_column('F:F', 27, total_fmt) | |
role_details_worksheet.set_column('G:G', 15, total_fmt) | |
writer.save() | |
writer.close() | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pymssql | |
import pandas as pd | |
# db configurations DEFAULT | |
sql_db_default = { | |
"host_name": "192.168.1.100", | |
"port": "1604", | |
"user_name": "Base_User", | |
"password": "HappyForYoU", | |
"database_name": "BaseDB", | |
"timeout": 300, | |
"login_timeout": 300 | |
} | |
# Put any query you want with format options or not | |
sql_query = 'use [BaseDB]; select * from tbl_name where name in (%s) ... Somme query (%s)' | |
class MsSqlDataPuller(object): | |
def __init__(self, **db_credentials): | |
if not db_credentials: | |
db_credentials = sql_db_default | |
self.db_cred = db_credentials | |
self.connection = pymssql.connect( | |
host=self.db_cred["host_name"], | |
port=self.db_cred["port"], | |
user=self.db_cred["user_name"], | |
password=self.db_cred["password"], | |
database=self.db_cred["database_name"], | |
login_timeout=self.db_cred["login_timeout"], | |
timeout=self.db_cred["timeout"] | |
) | |
def process(self, email_lists): | |
# Execute the query and returns as panda data frame | |
df = pd.read_sql_query(sql_query.format(email_lists, email_lists), self.connection) | |
return df |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# pandas_excels_clubbing_rows_based_on_values_in_one_column | |
df = pandas.read_excel('sample.xlsx', sheetname='Sheet1') | |
# to get the unique values from particular column | |
practices = df['repeating_values_column'].unique() | |
new_values = [] | |
# getting rows of particular values | |
for value in practices: | |
found = df[df['repeating_values_column'] == value] | |
# found is the row, we want |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Read the excel file and converting all details into a data frames | |
xlsx = pd.ExcelFile('all_details.xlsx') | |
data = pd.read_excel(xlsx, sheetname='A_B', index_col=None, na_values=['NA']) | |
xlsx.close() | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
file_name = 'NationalNames.csv' | |
# Read the excel file and converting all details into a data frames | |
df = pd.read_csv(file_name) | |
for i in df: | |
print(i) | |
print(df.columns) | |
df[['Name','Gender', 'Count']].to_csv('National_names.txt', sep=',', header=0, index=False) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
for key in keys: | |
# writer object | |
writer = pd.ExcelWriter('{}.xlsx'.format(key), engine='xlsxwriter') | |
found = data[data['Group'] == key] | |
# Sort values in data frame | |
found.sort_values(by=['Sender Email Address', 'Sender Name'], ascending=[False, True], inplace=True) | |
# TO order/arrange the column in specific order to be written in excel file | |
found = found[['Label', 'Sender Name', 'Sender Email Address', 'Received By Name', | |
'Subject','Message', 'Creation Time', 'Group', | |
'Contact', 'Email', 'Company Name']] | |
found.to_excel(writer, sheet_name=key, index=False) | |
# Rename Index values | |
new_found.reindex(df.index.rename(['Index_1', 'Index_2'])) | |
# Rename Column values | |
new_found.columns.values[0] = 'Column_1' | |
new_found.columns.values[1] = 'Column_2' | |
new_found.columns.values[2] = 'Column_3' | |
new_found.columns.values[3] = 'Column_4' | |
new_found.columns.values[4] = 'Column_5' | |
new_found.columns.values[5] = 'Column_6' | |
new_found.columns.values[6] = 'Column_7' | |
new_found.columns.values[7] = 'Column_8' | |
# delete column | |
new_found.drop(new_found.columns[[7]], axis=1, inplace=True) | |
# sort values before writing in excel | |
new_found.sort_values(by=['Column_4'], ascending=[True], inplace=True) | |
new_found.to_excel(writer, sheet_name='Role Details', index=False) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
all_details = [{'A': 1, 'B': 2}, {'A': 2, 'B': 3}] | |
# Create the data frame | |
df = pd.DataFrame(all_details) | |
# Create excel file using pandas ExcelWriter | |
writer = pd.ExcelWriter('all_details.xlsx', engine='xlsxwriter') | |
# write the data frame into a excel file | |
df.to_excel(writer, sheet_name='A_B', index=False) | |
writer.save() | |
writer.close() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment