Last active
October 31, 2017 03:38
-
-
Save vijayanandrp/8a1c6af2477d8c9d6c1889370452e74f to your computer and use it in GitHub Desktop.
Topic Classification using naive bayes with simple example.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python3 | |
| # encoding: utf-8 | |
| from sklearn.datasets import fetch_20newsgroups | |
| from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer | |
| from sklearn.naive_bayes import MultinomialNB | |
| from sklearn.model_selection import GridSearchCV | |
| from sklearn.pipeline import Pipeline | |
| from sklearn import metrics | |
| import numpy as np | |
| from pprint import pprint | |
| # Loading only selected category | |
| categories = ['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian'] | |
| # 1. Loading the data set | |
| train_set = fetch_20newsgroups(categories=categories, shuffle=True, random_state=55, subset='train') | |
| test_set = fetch_20newsgroups(categories=categories, shuffle=True, random_state=42, subset='test') | |
| # 2. Converting text and numbers (matrix) | |
| # 3. training in ml (all can be written in one line) | |
| text_clf = Pipeline([('vect', CountVectorizer()), | |
| ('tfidf', TfidfTransformer()), | |
| ('clf', MultinomialNB())]) | |
| text_clf.fit(train_set.data, train_set.target) | |
| docs_test = test_set.data | |
| predicted = text_clf.predict(docs_test) | |
| accuracy = np.mean(predicted == test_set.target) | |
| print('\nAccuracy of MultinomialNB (naive Bayes) - {}'.format(accuracy * 100)) | |
| # 4. Auto-tuning the training parameters using Grid Search for both feature extraction and classifier | |
| parameters = {'vect__ngram_range': [(1, 1), (1, 2)], | |
| 'tfidf__use_idf': (True, False), | |
| 'clf__fit_prior': (True, False), | |
| 'clf__alpha': (0.5, 1.0)} | |
| gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1) | |
| gs_clf.fit(train_set.data, train_set.target) | |
| gs_predicted = gs_clf.predict(docs_test) | |
| accuracy = np.mean(gs_predicted == test_set.target) | |
| print('\nAccuracy (after tuning) of MultinomialNB (naive Bayes) - {}'.format(accuracy * 100)) | |
| print('\nGrid Search best score -') | |
| print(gs_clf.best_score_) | |
| print('\nGrid Search best parameters -') | |
| pprint(gs_clf.best_params_) | |
| print('\nMetrics classification report ') | |
| print(metrics.classification_report(test_set.target, predicted, target_names=test_set.target_names)) | |
| print('\nMetric Confusion matrix') | |
| print(metrics.confusion_matrix(test_set.target, predicted)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment