Created
March 25, 2021 03:05
-
-
Save vikramsoni2/3293b5dab320ba6d67eb8eed415e1c04 to your computer and use it in GitHub Desktop.
Multiclass confusion matrix using Seaborn heatmap
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
y_true = le.inverse_transform(y_valid) | |
y_pred = le.inverse_transform(y_valid_pred_lr) | |
from sklearn.metrics import confusion_matrix | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
%matplotlib inline | |
data = confusion_matrix(y_true, y_pred) | |
df_cm = pd.DataFrame(data, columns=np.unique(y_true), index = np.unique(y_true)) | |
df_cm.index.name = 'Actual' | |
df_cm.columns.name = 'Predicted' | |
f, ax = plt.subplots(figsize=(15, 15)) | |
cmap = sns.cubehelix_palette(light=1, as_cmap=True) | |
sns.heatmap(df_cm, cbar=False, annot=True, cmap=cmap, square=True, fmt='.0f', | |
annot_kws={'size': 10}) | |
plt.title('Actuals vs Predicted') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment