Last active
July 23, 2020 09:23
-
-
Save vikramsoni2/9e9632054551c6d44bb6920249fb9705 to your computer and use it in GitHub Desktop.
Tensorflow dynamic gpu resource allocation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# actual code you can copy-paste into your Keras code to have Tensorflow dynamically allocate the GPU memory: | |
import tensorflow as tf | |
from keras.backend.tensorflow_backend import set_session | |
config = tf.ConfigProto() | |
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU | |
config.log_device_placement = True # to log device placement (on which device the operation ran) | |
# (nothing gets printed in Jupyter, only if you run it standalone) | |
sess = tf.Session(config=config) | |
set_session(sess) # set this TensorFlow session as the default session for Keras | |
##################################################################################### | |
from keras import backend as K | |
cfg = K.tf.ConfigProto() | |
cfg.gpu_options.allow_growth = True | |
K.set_session(K.tf.Session(config=cfg)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment