Created
April 28, 2023 15:29
-
-
Save vikramsoni2/d0d47d26c9c0634647dcec25b571719a to your computer and use it in GitHub Desktop.
binary confusion matrix using bokeh
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.metrics import confusion_matrix, classification_report, precision_score, recall_score, auc | |
from bokeh.transform import dodge | |
from bokeh.plotting import figure, ColumnDataSource, output_notebook, show | |
output_notebook() | |
def plot_confustion_matrix(y_true, y_pred, cutoff=0.5, normed=False, classes = ["Negative", "Positive"], colors = ['#fcb471', '#fce3cc', '#ccdaea', '#76a0c9']): | |
y_pred_bin = y_pred if len(np.unique(y_pred))==2 else y_pred >= cutoff | |
cm = confusion_matrix(y_true, y_pred_bin) | |
df_cm = pd.DataFrame(cm.T, index = classes, columns = classes) | |
df_cm.index.name = 'Actual' | |
df_cm.columns.name = 'Predicted' | |
df_cm = df_cm.stack().rename("value").reset_index() | |
df_cm['colors'] = colors | |
df_cm['label'] = ['TN','FN','FP','TP'] | |
total = df_cm['value'].sum() | |
df_cm['ratio'] = np.round((df_cm['value'] / total * 100), decimals=2) | |
df_cm['ratio'] = df_cm['ratio'].astype(str) + "%" | |
data = ColumnDataSource(df_cm) | |
p = figure(plot_width=300, plot_height=230, | |
x_axis_location='above', y_axis_location='left', | |
x_range=classes, y_range=list(reversed(classes)), | |
toolbar_location=None, tools='') | |
r = p.rect("Actual", "Predicted", 0.95, 0.95, source=data, fill_alpha=0.6, fill_color='colors', line_color='gray') | |
text_props = {"source": data, "text_align": "left", "text_baseline": "middle"} | |
x = dodge("Actual", -0.30, range=p.x_range) | |
p.text(x=x, y=dodge("Predicted", 0.15, range=p.y_range), text="label", text_font_size="8pt", **text_props) | |
if normed: | |
p.text(x=x, y=dodge("Predicted", -0.10, range=p.y_range), text="ratio", text_font_size="18pt", **text_props) | |
else: | |
p.text(x=x, y=dodge("Predicted", -0.10, range=p.y_range), text="value",text_font_size="18pt", **text_props) | |
p.outline_line_color = None | |
p.grid.grid_line_color = None | |
p.axis.axis_line_color = None | |
p.axis.major_tick_line_color = None | |
p.axis.major_label_standoff = 0 | |
if normed: | |
p.xaxis.axis_label = 'Prediction (Rates)' | |
else: | |
p.xaxis.axis_label = 'Prediction' | |
p.xaxis.axis_label_text_font_size = "10pt" | |
p.xaxis.axis_label_text_font_style = "bold" | |
p.xaxis.major_label_text_font_size = "8pt" | |
p.yaxis.axis_label = 'Actual' | |
p.yaxis.axis_label_text_font_size = "10pt" | |
p.yaxis.axis_label_text_font_style = "bold" | |
p.yaxis.major_label_text_font_size = "8pt" | |
p.yaxis.major_label_orientation = "vertical" | |
show(p) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment