-
-
Save viksit/bd1dad3d3ad64c2b6d9c to your computer and use it in GitHub Desktop.
trivial word embeddings eg
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# see http://matpalm.com/blog/2015/03/28/theano_word_embeddings/ | |
import theano | |
import theano.tensor as T | |
import numpy as np | |
import random | |
E = np.asarray(np.random.randn(6, 2), dtype='float32') | |
t_E = theano.shared(E) | |
t_idxs = T.ivector() | |
t_embedding_output = t_E[t_idxs] | |
t_dot_product = T.dot(t_embedding_output[0], t_embedding_output[1]) | |
t_label = T.iscalar() | |
gradient = T.grad(cost=abs(t_label - t_dot_product), wrt=t_E) | |
updates = [(t_E, t_E - 0.01 * gradient)] | |
train = theano.function(inputs=[t_idxs, t_label], outputs=[], updates=updates) | |
print "i n d0 d1" | |
for i in range(0, 10000): | |
v1, v2 = random.randint(0, 5), random.randint(0, 5) | |
label = 1.0 if (v1/2 == v2/2) else 0.0 | |
train([v1, v2], label) | |
if i % 100 == 0: | |
for n, embedding in enumerate(t_E.get_value()): | |
print i, n, embedding[0], embedding[1] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import theano | |
import theano.tensor as T | |
import numpy as np | |
import random | |
E = np.asarray(np.random.randn(6, 2), dtype='float32') | |
t_E = theano.shared(E) | |
t_idxs = T.ivector() | |
t_embedding_output = t_E[t_idxs] | |
t_dot_product = T.dot(t_embedding_output[0], t_embedding_output[1]) | |
t_label = T.iscalar() | |
gradient = T.grad(cost=abs(t_label - t_dot_product), wrt=t_embedding_output) | |
updates = [(t_E, T.inc_subtensor(t_embedding_output, -0.01 * gradient))] | |
train = theano.function(inputs=[t_idxs, t_label], outputs=[], updates=updates) | |
print "i n d0 d1" | |
for i in range(0, 10000): | |
v1, v2 = random.randint(0, 5), random.randint(0, 5) | |
label = 1.0 if (v1/2 == v2/2) else 0.0 | |
train([v1, v2], label) | |
if i % 100 == 0: | |
for n, embedding in enumerate(t_E.get_value()): | |
print i, n, embedding[0], embedding[1] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment