Created
November 19, 2023 19:51
-
-
Save villares/40df109503f4237256ef378dbd97920f to your computer and use it in GitHub Desktop.
Boids with numpy from https://www.labri.fr/perso/nrougier/from-python-to-numpy/#spatial-vectorization
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ----------------------------------------------------------------------------- | |
# From Pytnon to Numpy | |
# Copyright (2017) Nicolas P. Rougier - BSD license | |
# More information at https://github.com/rougier/numpy-book | |
# ----------------------------------------------------------------------------- | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.path import Path | |
from matplotlib.animation import FuncAnimation | |
from matplotlib.collections import PathCollection | |
class MarkerCollection: | |
""" | |
Marker collection | |
""" | |
def __init__(self, n=100): | |
v = np.array([(-0.25, -0.25), (+0.0, +0.5), (+0.25, -0.25), (0, 0)]) | |
c = np.array([Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) | |
self._base_vertices = np.tile(v.reshape(-1), n).reshape(n, len(v), 2) | |
self._vertices = np.tile(v.reshape(-1), n).reshape(n, len(v), 2) | |
self._codes = np.tile(c.reshape(-1), n) | |
self._scale = np.ones(n) | |
self._translate = np.zeros((n, 2)) | |
self._rotate = np.zeros(n) | |
self._path = Path(vertices=self._vertices.reshape(n*len(v), 2), | |
codes=self._codes) | |
self._collection = PathCollection([self._path], linewidth=0.5, | |
facecolor="k", edgecolor="w") | |
def update(self): | |
n = len(self._base_vertices) | |
self._vertices[...] = self._base_vertices * self._scale | |
cos_rotate, sin_rotate = np.cos(self._rotate), np.sin(self._rotate) | |
R = np.empty((n, 2, 2)) | |
R[:, 0, 0] = cos_rotate | |
R[:, 1, 0] = sin_rotate | |
R[:, 0, 1] = -sin_rotate | |
R[:, 1, 1] = cos_rotate | |
self._vertices[...] = np.einsum('ijk,ilk->ijl', self._vertices, R) | |
self._vertices += self._translate.reshape(n, 1, 2) | |
class Flock: | |
def __init__(self, count=500, width=640, height=360): | |
self.width = width | |
self.height = height | |
self.min_velocity = 0.5 | |
self.max_velocity = 2.0 | |
self.max_acceleration = 0.03 | |
self.velocity = np.zeros((count, 2), dtype=np.float32) | |
self.position = np.zeros((count, 2), dtype=np.float32) | |
angle = np.random.uniform(0, 2*np.pi, count) | |
self.velocity[:, 0] = np.cos(angle) | |
self.velocity[:, 1] = np.sin(angle) | |
angle = np.random.uniform(0, 2*np.pi, count) | |
radius = min(width, height)/2*np.random.uniform(0, 1, count) | |
self.position[:, 0] = width/2 + np.cos(angle)*radius | |
self.position[:, 1] = height/2 + np.sin(angle)*radius | |
def run(self): | |
position = self.position | |
velocity = self.velocity | |
min_velocity = self.min_velocity | |
max_velocity = self.max_velocity | |
max_acceleration = self.max_acceleration | |
n = len(position) | |
dx = np.subtract.outer(position[:, 0], position[:, 0]) | |
dy = np.subtract.outer(position[:, 1], position[:, 1]) | |
distance = np.hypot(dx, dy) | |
# Compute common distance masks | |
mask_0 = (distance > 0) | |
mask_1 = (distance < 25) | |
mask_2 = (distance < 50) | |
mask_1 *= mask_0 | |
mask_2 *= mask_0 | |
mask_3 = mask_2 | |
mask_1_count = np.maximum(mask_1.sum(axis=1), 1) | |
mask_2_count = np.maximum(mask_2.sum(axis=1), 1) | |
mask_3_count = mask_2_count | |
# Separation | |
mask, count = mask_1, mask_1_count | |
target = np.dstack((dx, dy)) | |
target = np.divide(target, distance.reshape(n, n, 1)**2, out=target, | |
where=distance.reshape(n, n, 1) != 0) | |
steer = (target*mask.reshape(n, n, 1)).sum(axis=1)/count.reshape(n, 1) | |
norm = np.sqrt((steer*steer).sum(axis=1)).reshape(n, 1) | |
steer = max_velocity*np.divide(steer, norm, out=steer, | |
where=norm != 0) | |
steer -= velocity | |
# Limit acceleration | |
norm = np.sqrt((steer*steer).sum(axis=1)).reshape(n, 1) | |
steer = np.multiply(steer, max_acceleration/norm, out=steer, | |
where=norm > max_acceleration) | |
separation = steer | |
# Alignment | |
# --------------------------------------------------------------------- | |
# Compute target | |
mask, count = mask_2, mask_2_count | |
target = np.dot(mask, velocity)/count.reshape(n, 1) | |
# Compute steering | |
norm = np.sqrt((target*target).sum(axis=1)).reshape(n, 1) | |
target = max_velocity * np.divide(target, norm, out=target, | |
where=norm != 0) | |
steer = target - velocity | |
# Limit acceleration | |
norm = np.sqrt((steer*steer).sum(axis=1)).reshape(n, 1) | |
steer = np.multiply(steer, max_acceleration/norm, out=steer, | |
where=norm > max_acceleration) | |
alignment = steer | |
# Cohesion | |
# --------------------------------------------------------------------- | |
# Compute target | |
mask, count = mask_3, mask_3_count | |
target = np.dot(mask, position)/count.reshape(n, 1) | |
# Compute steering | |
desired = target - position | |
norm = np.sqrt((desired*desired).sum(axis=1)).reshape(n, 1) | |
desired *= max_velocity / norm | |
steer = desired - velocity | |
# Limit acceleration | |
norm = np.sqrt((steer*steer).sum(axis=1)).reshape(n, 1) | |
steer = np.multiply(steer, max_acceleration/norm, out=steer, | |
where=norm > max_acceleration) | |
cohesion = steer | |
# --------------------------------------------------------------------- | |
acceleration = 1.5 * separation + alignment + cohesion | |
velocity += acceleration | |
norm = np.sqrt((velocity*velocity).sum(axis=1)).reshape(n, 1) | |
velocity = np.multiply(velocity, max_velocity/norm, out=velocity, | |
where=norm > max_velocity) | |
velocity = np.multiply(velocity, min_velocity/norm, out=velocity, | |
where=norm < min_velocity) | |
position += velocity | |
# Wraparound | |
position += (self.width, self.height) | |
position %= (self.width, self.height) | |
def update(*args): | |
#global flock, collection, | |
global trace | |
# Flock updating | |
flock.run() | |
collection._scale = 10 | |
collection._translate = flock.position | |
collection._rotate = -np.pi/2 + np.arctan2(flock.velocity[:, 1], | |
flock.velocity[:, 0]) | |
collection.update() | |
# Trace updating | |
if trace is not None: | |
P = flock.position.astype(int) | |
trace[height-1-P[:, 1], P[:, 0]] = .75 | |
trace *= .99 | |
im.set_array(trace) | |
# ----------------------------------------------------------------------------- | |
if __name__ == '__main__': | |
n = 500 | |
width, height = 640, 360 | |
flock = Flock(n) | |
fig = plt.figure(figsize=(10, 10*height/width), facecolor="white") | |
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0], aspect=1, frameon=False) | |
collection = MarkerCollection(n) | |
ax.add_collection(collection._collection) | |
ax.set_xlim(0, width) | |
ax.set_ylim(0, height) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# Trace | |
trace = None | |
if 0: | |
trace = np.zeros((height, width)) | |
im = ax.imshow(trace, extent=[0, width, 0, height], vmin=0, vmax=1, | |
interpolation="nearest", cmap=plt.cm.gray_r) | |
animation = FuncAnimation(fig, update, interval=10, frames=1000) | |
animation.save('boid.mp4', fps=40, dpi=80, bitrate=-1, codec="libx264", | |
extra_args=['-pix_fmt', 'yuv420p'], | |
metadata={'artist': 'Nicolas P. Rougier'}) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment