Created
August 13, 2014 08:01
-
-
Save vinay13/e2109eabd5aa116f4362 to your computer and use it in GitHub Desktop.
binary search tree deletion
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<stdio.h> | |
#include<stdlib.h> | |
struct node | |
{ | |
int key; | |
struct node *left, *right; | |
}; | |
// A utility function to create a new BST node | |
struct node *newNode(int item) | |
{ | |
struct node *temp = (struct node *)malloc(sizeof(struct node)); | |
temp->key = item; | |
temp->left = temp->right = NULL; | |
return temp; | |
} | |
// A utility function to do inorder traversal of BST | |
void inorder(struct node *root) | |
{ | |
if (root != NULL) | |
{ | |
inorder(root->left); | |
printf("%d ", root->key); | |
inorder(root->right); | |
} | |
} | |
/* A utility function to insert a new node with given key in BST */ | |
struct node* insert(struct node* node, int key) | |
{ | |
/* If the tree is empty, return a new node */ | |
if (node == NULL) return newNode(key); | |
/* Otherwise, recur down the tree */ | |
if (key < node->key) | |
node->left = insert(node->left, key); | |
else | |
node->right = insert(node->right, key); | |
/* return the (unchanged) node pointer */ | |
return node; | |
} | |
/* Given a non-empty binary search tree, return the node with minimum | |
key value found in that tree. Note that the entire tree does not | |
need to be searched. */ | |
struct node * minValueNode(struct node* node) | |
{ | |
struct node* current = node; | |
/* loop down to find the leftmost leaf */ | |
while (current->left != NULL) | |
current = current->left; | |
return current; | |
} | |
/* Given a binary search tree and a key, this function deletes the key | |
and returns the new root */ | |
struct node* deleteNode(struct node* root, int key) | |
{ | |
// base case | |
if (root == NULL) return root; | |
// If the key to be deleted is smaller than the root's key, | |
// then it lies in left subtree | |
if (key < root->key) | |
root->left = deleteNode(root->left, key); | |
// If the key to be deleted is greater than the root's key, | |
// then it lies in right subtree | |
else if (key > root->key) | |
root->right = deleteNode(root->right, key); | |
// if key is same as root's key, then This is the node | |
// to be deleted | |
else | |
{ | |
// node with only one child or no child | |
if (root->left == NULL) | |
{ | |
struct node *temp = root->right; | |
free(root); | |
return temp; | |
} | |
else if (root->right == NULL) | |
{ | |
struct node *temp = root->left; | |
free(root); | |
return temp; | |
} | |
// node with two children: Get the inorder successor (smallest | |
// in the right subtree) | |
struct node* temp = minValueNode(root->right); | |
// Copy the inorder successor's content to this node | |
root->key = temp->key; | |
// Delete the inorder successor | |
root->right = deleteNode(root->right, temp->key); | |
} | |
return root; | |
} | |
// Driver Program to test above functions | |
int main() | |
{ | |
/* Let us create following BST | |
50 | |
/ \ | |
30 70 | |
/ \ / \ | |
20 40 60 80 */ | |
struct node *root = NULL; | |
root = insert(root, 50); | |
root = insert(root, 30); | |
root = insert(root, 20); | |
root = insert(root, 40); | |
root = insert(root, 70); | |
root = insert(root, 60); | |
root = insert(root, 80); | |
printf("Inorder traversal of the given tree \n"); | |
inorder(root); | |
printf("\nDelete 20\n"); | |
root = deleteNode(root, 20); | |
printf("Inorder traversal of the modified tree \n"); | |
inorder(root); | |
printf("\nDelete 30\n"); | |
root = deleteNode(root, 30); | |
printf("Inorder traversal of the modified tree \n"); | |
inorder(root); | |
printf("\nDelete 50\n"); | |
root = deleteNode(root, 50); | |
printf("Inorder traversal of the modified tree \n"); | |
inorder(root); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment