-
-
Save vinceallenvince/7b4fd486e0097d332ea3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Ported from Stefan Gustavson's java implementation | |
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | |
// Read Stefan's excellent paper for details on how this code works. | |
// | |
// Sean McCullough [email protected] | |
/** | |
* You can pass in a random number generator object if you like. | |
* It is assumed to have a random() method. | |
*/ | |
var ClassicalNoise = function(r) { // Classic Perlin noise in 3D, for comparison | |
if (r == undefined) r = Math; | |
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0], | |
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1], | |
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]]; | |
this.p = []; | |
for (var i=0; i<256; i++) { | |
this.p[i] = Math.floor(r.random()*256); | |
} | |
// To remove the need for index wrapping, double the permutation table length | |
this.perm = []; | |
for(var i=0; i<512; i++) { | |
this.perm[i]=this.p[i & 255]; | |
} | |
}; | |
ClassicalNoise.prototype.dot = function(g, x, y, z) { | |
return g[0]*x + g[1]*y + g[2]*z; | |
}; | |
ClassicalNoise.prototype.mix = function(a, b, t) { | |
return (1.0-t)*a + t*b; | |
}; | |
ClassicalNoise.prototype.fade = function(t) { | |
return t*t*t*(t*(t*6.0-15.0)+10.0); | |
}; | |
// Classic Perlin noise, 3D version | |
ClassicalNoise.prototype.noise = function(x, y, z) { | |
// Find unit grid cell containing point | |
var X = Math.floor(x); | |
var Y = Math.floor(y); | |
var Z = Math.floor(z); | |
// Get relative xyz coordinates of point within that cell | |
x = x - X; | |
y = y - Y; | |
z = z - Z; | |
// Wrap the integer cells at 255 (smaller integer period can be introduced here) | |
X = X & 255; | |
Y = Y & 255; | |
Z = Z & 255; | |
// Calculate a set of eight hashed gradient indices | |
var gi000 = this.perm[X+this.perm[Y+this.perm[Z]]] % 12; | |
var gi001 = this.perm[X+this.perm[Y+this.perm[Z+1]]] % 12; | |
var gi010 = this.perm[X+this.perm[Y+1+this.perm[Z]]] % 12; | |
var gi011 = this.perm[X+this.perm[Y+1+this.perm[Z+1]]] % 12; | |
var gi100 = this.perm[X+1+this.perm[Y+this.perm[Z]]] % 12; | |
var gi101 = this.perm[X+1+this.perm[Y+this.perm[Z+1]]] % 12; | |
var gi110 = this.perm[X+1+this.perm[Y+1+this.perm[Z]]] % 12; | |
var gi111 = this.perm[X+1+this.perm[Y+1+this.perm[Z+1]]] % 12; | |
// The gradients of each corner are now: | |
// g000 = grad3[gi000]; | |
// g001 = grad3[gi001]; | |
// g010 = grad3[gi010]; | |
// g011 = grad3[gi011]; | |
// g100 = grad3[gi100]; | |
// g101 = grad3[gi101]; | |
// g110 = grad3[gi110]; | |
// g111 = grad3[gi111]; | |
// Calculate noise contributions from each of the eight corners | |
var n000= this.dot(this.grad3[gi000], x, y, z); | |
var n100= this.dot(this.grad3[gi100], x-1, y, z); | |
var n010= this.dot(this.grad3[gi010], x, y-1, z); | |
var n110= this.dot(this.grad3[gi110], x-1, y-1, z); | |
var n001= this.dot(this.grad3[gi001], x, y, z-1); | |
var n101= this.dot(this.grad3[gi101], x-1, y, z-1); | |
var n011= this.dot(this.grad3[gi011], x, y-1, z-1); | |
var n111= this.dot(this.grad3[gi111], x-1, y-1, z-1); | |
// Compute the fade curve value for each of x, y, z | |
var u = this.fade(x); | |
var v = this.fade(y); | |
var w = this.fade(z); | |
// Interpolate along x the contributions from each of the corners | |
var nx00 = this.mix(n000, n100, u); | |
var nx01 = this.mix(n001, n101, u); | |
var nx10 = this.mix(n010, n110, u); | |
var nx11 = this.mix(n011, n111, u); | |
// Interpolate the four results along y | |
var nxy0 = this.mix(nx00, nx10, v); | |
var nxy1 = this.mix(nx01, nx11, v); | |
// Interpolate the two last results along z | |
var nxyz = this.mix(nxy0, nxy1, w); | |
return nxyz; | |
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Ported from Stefan Gustavson's java implementation | |
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | |
// Read Stefan's excellent paper for details on how this code works. | |
// | |
// Sean McCullough [email protected] | |
/** | |
* You can pass in a random number generator object if you like. | |
* It is assumed to have a random() method. | |
*/ | |
var SimplexNoise = function(r) { | |
if (r == undefined) r = Math; | |
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0], | |
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1], | |
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]]; | |
this.p = []; | |
for (var i=0; i<256; i++) { | |
this.p[i] = Math.floor(r.random()*256); | |
} | |
// To remove the need for index wrapping, double the permutation table length | |
this.perm = []; | |
for(var i=0; i<512; i++) { | |
this.perm[i]=this.p[i & 255]; | |
} | |
// A lookup table to traverse the simplex around a given point in 4D. | |
// Details can be found where this table is used, in the 4D noise method. | |
this.simplex = [ | |
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0], | |
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0], | |
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0], | |
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0], | |
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0], | |
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0], | |
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0], | |
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]]; | |
}; | |
SimplexNoise.prototype.dot = function(g, x, y) { | |
return g[0]*x + g[1]*y; | |
}; | |
SimplexNoise.prototype.noise = function(xin, yin) { | |
var n0, n1, n2; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
var F2 = 0.5*(Math.sqrt(3.0)-1.0); | |
var s = (xin+yin)*F2; // Hairy factor for 2D | |
var i = Math.floor(xin+s); | |
var j = Math.floor(yin+s); | |
var G2 = (3.0-Math.sqrt(3.0))/6.0; | |
var t = (i+j)*G2; | |
var X0 = i-t; // Unskew the cell origin back to (x,y) space | |
var Y0 = j-t; | |
var x0 = xin-X0; // The x,y distances from the cell origin | |
var y0 = yin-Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-sqrt(3))/6 | |
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
var y1 = y0 - j1 + G2; | |
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
var y2 = y0 - 1.0 + 2.0 * G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
var ii = i & 255; | |
var jj = j & 255; | |
var gi0 = this.perm[ii+this.perm[jj]] % 12; | |
var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12; | |
var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12; | |
// Calculate the contribution from the three corners | |
var t0 = 0.5 - x0*x0-y0*y0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient | |
} | |
var t1 = 0.5 - x1*x1-y1*y1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1); | |
} | |
var t2 = 0.5 - x2*x2-y2*y2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70.0 * (n0 + n1 + n2); | |
}; | |
// 3D simplex noise | |
SimplexNoise.prototype.noise3d = function(xin, yin, zin) { | |
var n0, n1, n2, n3; // Noise contributions from the four corners | |
// Skew the input space to determine which simplex cell we're in | |
var F3 = 1.0/3.0; | |
var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D | |
var i = Math.floor(xin+s); | |
var j = Math.floor(yin+s); | |
var k = Math.floor(zin+s); | |
var G3 = 1.0/6.0; // Very nice and simple unskew factor, too | |
var t = (i+j+k)*G3; | |
var X0 = i-t; // Unskew the cell origin back to (x,y,z) space | |
var Y0 = j-t; | |
var Z0 = k-t; | |
var x0 = xin-X0; // The x,y,z distances from the cell origin | |
var y0 = yin-Y0; | |
var z0 = zin-Z0; | |
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
// Determine which simplex we are in. | |
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
if(x0>=y0) { | |
if(y0>=z0) | |
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order | |
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order | |
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order | |
} | |
else { // x0<y0 | |
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order | |
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order | |
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order | |
} | |
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
// c = 1/6. | |
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
var y1 = y0 - j1 + G3; | |
var z1 = z0 - k1 + G3; | |
var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords | |
var y2 = y0 - j2 + 2.0*G3; | |
var z2 = z0 - k2 + 2.0*G3; | |
var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords | |
var y3 = y0 - 1.0 + 3.0*G3; | |
var z3 = z0 - 1.0 + 3.0*G3; | |
// Work out the hashed gradient indices of the four simplex corners | |
var ii = i & 255; | |
var jj = j & 255; | |
var kk = k & 255; | |
var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12; | |
var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12; | |
var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12; | |
var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12; | |
// Calculate the contribution from the four corners | |
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0); | |
} | |
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1); | |
} | |
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2); | |
} | |
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to stay just inside [-1,1] | |
return 32.0*(n0 + n1 + n2 + n3); | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment