Created
April 11, 2020 17:14
-
-
Save vincentarelbundock/cc5b9198a49a0f862fd23efd26ae43ec to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lme4) | |
library(gt) | |
library(modelsummary) | |
library(tidyverse) | |
# y dependent variable | |
# x regressor varies at the county-year level | |
# z regressor varies at the county level | |
url <- 'https://vincentarelbundock.github.io/Rdatasets/csv/plm/Crime.csv' | |
dat <- read_csv(url) %>% | |
select(county, year, | |
y = crmrte, | |
x = density, | |
z = pctmin) %>% | |
group_by(county) %>% | |
mutate(xbar = mean(x)) %>% | |
ungroup | |
mod <- list() | |
mod[['Pooling']] <- lm(y ~ x + z, data = dat) | |
mod[['FE 1']] <- lm(y ~ x + factor(county), data = dat) | |
mod[['FE 2']] <- lm(y ~ I(x - xbar) - 1, data = dat) | |
mod[['MLM']] <- lmer(y ~ x + z + (1 | county), data = dat) | |
mod[['Mundlak']] <- lmer(y ~ I(x - xbar) + xbar + z + (1 | county), data = dat) | |
tab <- msummary(mod, fmt = '%.10f', coef_omit = 'county') %>% | |
tab_style(cell_fill('pink'), cells_body('Mundlak', 7)) %>% | |
tab_style(cell_fill('lightcyan'), cells_body('Mundlak', c(5, 11))) %>% | |
tab_style(cell_fill('pink'), cells_body('FE 1', 3)) %>% | |
tab_style(cell_fill('pink'), cells_body('FE 2', 7)) | |
tab | |
tab %>% gtsave('mundlak.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment