Skip to content

Instantly share code, notes, and snippets.

@vinimonteiro
Created August 4, 2021 19:17
Show Gist options
  • Save vinimonteiro/33a8af9b8b93ddec0fe3f1c67fbcc190 to your computer and use it in GitHub Desktop.
Save vinimonteiro/33a8af9b8b93ddec0fe3f1c67fbcc190 to your computer and use it in GitHub Desktop.
Linear regression algorithm from Pragramatic programmers
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
def predict(X, w, b):
return X * w + b
def loss(X, Y, w, b):
return np.average((predict(X, w, b) - Y) ** 2)
def train(X, Y, iterations, lr):
w = b = 0
for i in range(iterations):
current_loss = loss(X, Y, w, b)
print("Iteration %4d => Loss: %.6f" % (i, current_loss))
if loss(X, Y, w + lr, b) < current_loss:
w += lr
elif loss(X, Y, w - lr, b) < current_loss:
w -= lr
elif loss(X, Y, w, b + lr) < current_loss:
b += lr
elif loss(X, Y, w, b - lr) < current_loss:
b -= lr
else:
return w, b
raise Exception("Couldn't converge within %d iterations" % iterations)
X, Y = np.loadtxt("pizza.txt", skiprows=1, unpack=True)
w, b = train(X, Y, iterations=10000, lr=0.01)
print("\nw=%.3f, b=%.3f" % (w, b))
print("Prediction: x=%d => y=%.2f" % (20, predict(20, w, b)))
sns.set()
plt.axis([0, 50, 0, 50])
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.xlabel("Reservations", fontsize=30)
plt.ylabel("Pizzas", fontsize=30)
plt.plot(X, Y, "bo")
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment