Skip to content

Instantly share code, notes, and snippets.

@vishal-nagarajan
Created January 14, 2026 04:25
Show Gist options
  • Select an option

  • Save vishal-nagarajan/b197619659bd4e6af0c010050a1af273 to your computer and use it in GitHub Desktop.

Select an option

Save vishal-nagarajan/b197619659bd4e6af0c010050a1af273 to your computer and use it in GitHub Desktop.

Claude Code Agent vs Ralph Wiggum Loop: Complete Guide

Table of Contents

  1. Overview
  2. How They Work
  3. Comparison
  4. When to Use Each
  5. Case Study: Angular to React Migration
  6. Best Practices
  7. Sources

Overview

Claude Code Agent

Claude Code is Anthropic's official CLI tool that operates as an interactive agentic coding assistant. It maintains conversation context, uses human-in-the-loop governance, and spawns specialized subagents for different tasks.

Philosophy: "Give Claude the tools programmers use"

Key characteristics:

  • Single main loop with human approval at each step
  • Maintains conversation history and todo lists
  • Uses 50%+ Haiku calls for supporting tasks (cost optimization)
  • Rejects RAG in favor of ripgrep/glob search
  • Spawns specialized subagents (Explore, Plan, general-purpose)

Ralph Wiggum Loop

The Ralph Wiggum technique is an autonomous iteration pattern that runs AI coding agents repeatedly until completion criteria are met. Named after The Simpsons character—perpetually confused but never stopping.

Philosophy: "The loop is the hero, not the model"

Key characteristics:

  • Stateless bash loop that runs until completion
  • Context resets each iteration (stateless resampling)
  • State lives in filesystem/git only
  • No human intervention between iterations
  • Uses completion promises (e.g., <promise>COMPLETE</promise>)

Basic pattern:

while :; do cat PROMPT.md | claude-code ; done

How They Work

Claude Code Agent Architecture

┌─────────────────────────────────────────────────────────┐
│                    Claude Code Agent                     │
├─────────────────────────────────────────────────────────┤
│  ┌─────────────┐    ┌─────────────┐    ┌─────────────┐ │
│  │   Gather    │ -> │    Take     │ -> │   Verify    │ │
│  │   Context   │    │   Action    │    │    Work     │ │
│  └─────────────┘    └─────────────┘    └─────────────┘ │
│         ^                                      │        │
│         │                                      v        │
│         └──────────── Repeat ─────────────────┘        │
│                                                         │
│  ┌─────────────────────────────────────────────────┐   │
│  │                   Subagents                      │   │
│  │  ┌─────────┐  ┌─────────┐  ┌─────────────────┐  │   │
│  │  │ Explore │  │  Plan   │  │ General Purpose │  │   │
│  │  └─────────┘  └─────────┘  └─────────────────┘  │   │
│  └─────────────────────────────────────────────────┘   │
│                                                         │
│  Human Approval Required at Each Step                   │
└─────────────────────────────────────────────────────────┘

Tool hierarchy:

  • Low-level: Bash, Read, Write
  • Medium-level: Edit, Grep, Glob
  • High-level: Task, WebFetch, TodoWrite

Ralph Wiggum Loop Architecture

┌─────────────────────────────────────────────────────────┐
│                   Ralph Wiggum Loop                      │
├─────────────────────────────────────────────────────────┤
│                                                          │
│  ┌──────────────────────────────────────────────────┐   │
│  │                   Bash Loop                       │   │
│  │  while :; do                                      │   │
│  │    cat PROMPT.md | claude-code                    │   │
│  │    # Stop hook checks for completion promise      │   │
│  │  done                                             │   │
│  └──────────────────────────────────────────────────┘   │
│                          │                               │
│                          v                               │
│  ┌──────────────────────────────────────────────────┐   │
│  │              State Management                     │   │
│  │  ┌─────────────┐         ┌─────────────────┐     │   │
│  │  │ Git History │         │ Modified Files  │     │   │
│  │  └─────────────┘         └─────────────────┘     │   │
│  │  Context resets each iteration                    │   │
│  │  State persists in filesystem only                │   │
│  └──────────────────────────────────────────────────┘   │
│                                                          │
│  No Human Intervention Between Iterations                │
└─────────────────────────────────────────────────────────┘

Stateless resampling: Instead of maintaining growing conversation history (which leads to context rot), the system resets the context window every iteration. The agent maintains state only through the filesystem and version control.


Comparison

Side-by-Side

Aspect Claude Code Agent Ralph Wiggum Loop
Nature Interactive assistant Autonomous iteration pattern
Architecture Single loop + human approval Stateless bash loop
State Management Maintains conversation context Resets each iteration
Human Oversight Required at each step None between iterations
Session Duration Minutes to hours (interactive) Hours to days (autonomous)
Cost Model Pay per interaction Pay per iteration ($50-100+ for long runs)
Failure Mode Graceful (asks for help) Overbaking (destructive cycles)
Ambiguity Handling Asks clarifying questions Fails or loops infinitely

Strengths

Claude Code Agent:

  • Context-aware across conversation
  • Human governance at each step
  • Subagent specialization (different models for different tasks)
  • Graceful handling of ambiguity
  • Cost-optimized through Haiku delegation
  • Maintains todo lists for complex tasks

Ralph Wiggum Loop:

  • Runs autonomously for hours/days
  • Stateless resampling prevents context rot
  • Scales to massive refactors
  • Works overnight (YC teams shipped 6 repos for ~$297)
  • Built entire programming language (Cursed Lang) through iteration
  • Deterministic loops in undeterministic environment

Weaknesses

Claude Code Agent:

  • Limited autonomy (requires human approval)
  • Not suited for overnight batch work
  • Session-based design
  • Context window limits for very long tasks

Ralph Wiggum Loop:

  • "Overbaking" failure mode on impossible tasks
  • Vague requirements cause infinite loops
  • Can compound errors if intermediate states break CI
  • Costs add up fast (50 iterations = $50-100+)
  • Requires Principal Skinner harness for production safety
  • No judgment for architectural decisions

When to Use Each

Decision Matrix

Use Case Best Choice Reason
Interactive development Claude Code Context maintenance, course correction
Large refactors (clear criteria) Ralph Wiggum Runs for hours; measurable outcomes
Exploratory work Claude Code Requires judgment and clarification
Framework migrations Ralph Wiggum Deterministic goal
Security-sensitive code Claude Code Human oversight on each action
TDD workflows Ralph Wiggum Iterate until tests green
Architectural decisions Claude Code Requires human reasoning
Greenfield with defined endpoints Ralph Wiggum Clear success criteria
Debugging unknown issues Claude Code Exploratory reasoning needed
Overnight batch work Ralph Wiggum Autonomous execution
Production deployments Claude Code + Skinner Governance required

Ralph Wiggum Success Criteria Examples

Ralph works when you can define objective, measurable completion:

# Good criteria (measurable)
"All tests pass with >80% coverage"
"TypeScript compilation succeeds with no errors"
"All files in src/utils have JSDoc comments"
"Migrate all Jest tests to Vitest - npm test passes"

# Bad criteria (ambiguous)
"Make it better"
"Improve performance"
"Clean up the code"
"Fix the bugs"

The Principal Skinner Harness

For production use of Ralph Wiggum, implement governance:

  1. Deterministic tool lanes — Intercept every command before OS execution
  2. Behavioral circuit breakers — Trigger human-in-the-loop for suspicious patterns
  3. Distinct agent identity — Unique SSH keys for attribution
  4. Cost limits — Stop after N iterations or $X spent

Case Study: Angular to React Migration

Why Not Pure Ralph Wiggum?

Angular → React isn't a syntax swap—it's an architectural rewrite:

Angular Concept React Equivalent Requires Judgment?
Modules + DI Context/Hooks Yes
RxJS Observables React Query/hooks Yes
Two-way binding Controlled components Yes
Angular Services Custom hooks/Context Yes
Template syntax JSX Partially automatable
NgRx Redux/Zustand/Jotai Yes
Angular Router React Router Yes
Angular Forms React Hook Form Partially automatable

Recommended Hybrid Strategy

Phase 1: Architecture (Claude Code Agent)

Human-in-the-loop for decisions:

Questions to resolve:
- State management: Redux vs Zustand vs Context?
- Data fetching: React Query vs SWR vs custom hooks?
- Routing: React Router v6 patterns?
- Styling: CSS modules vs Tailwind vs styled-components?
- Component structure and folder organization?
- Testing strategy: Jest + RTL? Vitest?

Phase 2: Scaffolding (Claude Code Agent)

  • Set up React project with chosen tooling
  • Create shared utilities, hooks, context providers
  • Set up routing skeleton
  • Configure build/test infrastructure
  • Establish component patterns

Phase 3: Component Migration (Ralph Wiggum)

These sub-tasks have measurable success criteria:

Task Ralph Wiggum Prompt Success Criteria
Utility functions "Migrate all utils from src/app/utils to src/utils, TypeScript compatible" All tests pass
API services "Convert Angular HTTP services to React Query hooks" Type-check + tests pass
Presentational components "Convert components in src/app/components/ui to React functional components" Storybook renders
Form validation "Convert Angular reactive forms to React Hook Form" Form tests pass
Pipes to utilities "Convert all Angular pipes to utility functions" Unit tests pass

Example Ralph commands:

# Convert services to React Query hooks
/ralph-loop "Convert all Angular services in src/app/services/ to React Query hooks.
Each service should become a custom hook in src/hooks/.
Maintain the same API contract. Run npm test after each file."
--max-iterations 30

# Migrate utility functions
/ralph-loop "Migrate all utility functions from src/app/utils to src/utils.
Convert to TypeScript with proper types.
Success: npm run typecheck && npm test pass."
--max-iterations 20

Phase 4: Integration (Claude Code Agent)

  • Wire components together
  • Handle edge cases
  • Debug state management issues
  • Performance optimization
  • E2E testing

Cost Estimates

Phase Approach Approx Cost
Architecture decisions Claude Code $10-30
Scaffolding Claude Code $20-50
Utility/service migration Ralph Wiggum $50-150 per batch
Component conversion Ralph Wiggum $100-300
Integration/debugging Claude Code $50-100
Total Hybrid $230-630

Warning Signs to Stop Ralph Wiggum

  • Tests keep failing after 5+ iterations → switch to Claude Code
  • Agent is refactoring unrelated code → stop immediately
  • Architectural patterns emerging that weren't discussed → human review
  • Costs exceeding $100 per sub-task → scope too large, break down
  • CI broken for multiple iterations → manual intervention needed

Best Practices

Claude Code Agent

  1. Use todo lists for complex multi-step tasks
  2. Leverage subagents for specialized work (Explore, Plan)
  3. Read before editing — never modify unseen code
  4. Keep sessions focused — one major task per session
  5. Use plan mode for architectural decisions

Ralph Wiggum Loop

  1. Start small — 10-20 iterations initially, not 50
  2. Define objective criteria — "tests pass" not "looks good"
  3. Keep CI green — broken intermediate states compound
  4. Monitor costs — set spending limits
  5. Use progress.txt — track iteration outcomes
  6. Implement Principal Skinner — governance for production

Hybrid Approach

  1. Claude Code for "what" and "why" — decisions, architecture
  2. Ralph Wiggum for "do this N times" — repetitive conversion
  3. Human checkpoints between phases
  4. Clear handoff criteria between approaches
  5. Cost budgets per phase

Sources


Generated: January 2026

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment