Last active
August 7, 2020 18:42
-
-
Save viswanathgs/16985a6a889220841febd2044f55902f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
diff --git a/platform/pybmi/pybmi/torch/__init__.py b/platform/pybmi/pybmi/torch/__init__.py | |
index fa5c5f69a..71e24ea74 100644 | |
--- a/platform/pybmi/pybmi/torch/__init__.py | |
+++ b/platform/pybmi/pybmi/torch/__init__.py | |
@@ -3,5 +3,5 @@ from .modules import ( | |
GRU, LSTM, Conv1d, Conv2d, MaxPool2d, Module, Permute, Permuted, | |
RotationInvariantMLP, Sequential, SkipConnection, Slice, StackTime, | |
Stateless, StatelessWrapper, TdsFullyConnectedBlock, TdsConv2dTimeBlock, | |
- TdsBlock, DistributedDataParallel, save) | |
+ TdsBlock, DistributedDataParallel, save, BatchNorm1d) | |
from .online import TorchTransformer | |
diff --git a/platform/pybmi/pybmi/torch/modules.py b/platform/pybmi/pybmi/torch/modules.py | |
index c318729d6..8f80e3886 100644 | |
--- a/platform/pybmi/pybmi/torch/modules.py | |
+++ b/platform/pybmi/pybmi/torch/modules.py | |
@@ -103,6 +103,17 @@ class StatelessWrapper(Stateless): | |
return self.child.forward(inputs) | |
+class BatchNorm1d(Stateless): | |
+ def __init__(self, num_features: int) -> None: | |
+ super().__init__() | |
+ self.bn = nn.BatchNorm1d(num_features) | |
+ # self.train(False) | |
+ | |
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
+ x = inputs.transpose(1, 2) | |
+ return self.bn(x).transpose(1, 2) | |
+ | |
+ | |
class Sequential(Module): | |
"""A linear chain of :py:class:`pybmi.torch.Module` objects | |
@@ -803,6 +814,7 @@ class TdsConv2dTimeBlock(Stateless): | |
self.rpad = rpad | |
self.pad, conv_pad = maybe_asymetric_padding(self.kw, self.rpad) | |
+ conv_pad = 0 # todo slog | |
self.conv2d = nn.Conv2d( | |
in_channels=c, | |
out_channels=c, | |
@@ -820,8 +832,10 @@ class TdsConv2dTimeBlock(Stateless): | |
x = self.pad(x) | |
x = self.conv2d(x) | |
x = self.relu(x) | |
- x = x.transpose(1, 2).reshape(N, T, C) # N, T, C | |
- x = x + inputs | |
+ # todo slog | |
+ x = x.transpose(1, 2) | |
+ x = x.reshape(N, x.shape[1], C) # N, T', C | |
+ x = x + inputs[:, :x.shape[1], :] # todo slog | |
x = self.layer_norm(x) | |
return x | |
diff --git a/platform/pybmi/pybmi/torch/tests/test_modules.py b/platform/pybmi/pybmi/torch/tests/test_modules.py | |
index 462140f2e..0ba8b47d9 100644 | |
--- a/platform/pybmi/pybmi/torch/tests/test_modules.py | |
+++ b/platform/pybmi/pybmi/torch/tests/test_modules.py | |
@@ -88,11 +88,12 @@ FACTORIES: Mapping[str, Tuple[str, Callable[[], pt.Module]]] = { | |
# "tds_fully_connected_block": ("3d", lambda: pt.TdsFullyConnectedBlock( | |
# INPUT_SIZE, | |
# )), | |
- "tds_conv2d_time_block": ("3d", lambda: pt.TdsConv2dTimeBlock( | |
- c=INPUT_SIZE // 2, | |
- w=INPUT_SIZE // 2, | |
- kw=3, | |
- )), | |
+ # "tds_conv2d_time_block": ("3d", lambda: pt.TdsConv2dTimeBlock( | |
+ # c=INPUT_SIZE // 2, | |
+ # w=INPUT_SIZE // 2, | |
+ # kw=3, | |
+ # )), | |
+ "batch_norm": ("3d", lambda: pt.BatchNorm1d(INPUT_SIZE)), | |
} # yapf: disable | |
FACTORIES_1D = { |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment