Created
July 7, 2016 19:26
-
-
Save viswanathgs/46015e51006049e783e33245eb269e06 to your computer and use it in GitHub Desktop.
Compare GPU to GPU broadcast with CPU to GPU broadcast
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import tensorflow as tf | |
import time | |
def run(source_device, num_gpus=4): | |
shape = [100000000] | |
source_device = '/%s:0' % source_device | |
with tf.device(source_device): | |
weight_init = tf.truncated_normal_initializer() | |
a = tf.get_variable('source_var', shape=shape, initializer=weight_init) | |
broadcasts = [] | |
for i in range(1, num_gpus): | |
with tf.device('/gpu:%d' % i): | |
b = tf.get_variable('copy_%d' % i, shape=shape) | |
broadcasts.append(tf.assign(b, a)) | |
session = tf.Session(config=tf.ConfigProto(log_device_placement=True)) | |
start = time.time() * 1000 | |
session.run(tf.initialize_all_variables()) | |
return (time.time() * 1000 - start) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('source_device', choices=['cpu', 'gpu']) | |
args = parser.parse_args() | |
elapsed = run(args.source_device) | |
print("Elapsed time = {} ms".format(elapsed)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment