Created
June 27, 2016 23:37
-
-
Save viswanathgs/abe4a8732a81c666af8bb99254b8e1da to your computer and use it in GitHub Desktop.
DQN CartPole
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
import random | |
import numpy as np | |
import tensorflow as tf | |
class DQN: | |
REPLAY_MEMORY_SIZE = 10000 | |
RANDOM_ACTION_DECAY = 0.99 | |
MIN_RANDOM_ACTION_PROB = 0.1 | |
HIDDEN1_SIZE = 20 | |
HIDDEN2_SIZE = 20 | |
NUM_EPISODES = 10000 | |
MAX_STEPS = 1000 | |
LEARNING_RATE = 0.001 | |
MINIBATCH_SIZE = 50 | |
DISCOUNT_FACTOR = 0.9 | |
TARGET_UPDATE_FREQ = 300 | |
REG_FACTOR = 0.001 | |
LOG_DIR = '/tmp/dqn' | |
random_action_prob = 0.5 | |
replay_memory = [] | |
def __init__(self, env): | |
self.env = gym.make(env) | |
assert len(self.env.observation_space.shape) == 1 | |
self.input_size = self.env.observation_space.shape[0] | |
self.output_size = self.env.action_space.n | |
def init_network(self): | |
# Inference | |
self.x = tf.placeholder(tf.float32, [None, self.input_size]) | |
with tf.name_scope('hidden1'): | |
W1 = tf.Variable( | |
tf.truncated_normal([self.input_size, self.HIDDEN1_SIZE], | |
stddev=0.01), name='W1') | |
b1 = tf.Variable(tf.zeros(self.HIDDEN1_SIZE), name='b1') | |
h1 = tf.nn.tanh(tf.matmul(self.x, W1) + b1) | |
with tf.name_scope('hidden2'): | |
W2 = tf.Variable( | |
tf.truncated_normal([self.HIDDEN1_SIZE, self.HIDDEN2_SIZE], | |
stddev=0.01), name='W2') | |
b2 = tf.Variable(tf.zeros(self.HIDDEN2_SIZE), name='b2') | |
h2 = tf.nn.tanh(tf.matmul(h1, W2) + b2) | |
with tf.name_scope('output'): | |
W3 = tf.Variable( | |
tf.truncated_normal([self.HIDDEN2_SIZE, self.output_size], | |
stddev=0.01), name='W3') | |
b3 = tf.Variable(tf.zeros(self.output_size), name='b3') | |
self.Q = tf.matmul(h2, W3) + b3 | |
self.weights = [W1, b1, W2, b2, W3, b3] | |
# Loss | |
self.targetQ = tf.placeholder(tf.float32, [None]) | |
self.targetActionMask = tf.placeholder(tf.float32, [None, self.output_size]) | |
# TODO: Optimize this | |
q_values = tf.reduce_sum(tf.mul(self.Q, self.targetActionMask), | |
reduction_indices=[1]) | |
self.loss = tf.reduce_mean(tf.square(tf.sub(q_values, self.targetQ))) | |
# Reguralization | |
for w in [W1, W2, W3]: | |
self.loss += self.REG_FACTOR * tf.reduce_sum(tf.square(w)) | |
# Training | |
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE) | |
global_step = tf.Variable(0, name='global_step', trainable=False) | |
self.train_op = optimizer.minimize(self.loss, global_step=global_step) | |
def train(self, num_episodes=NUM_EPISODES): | |
self.session = tf.Session() | |
# Summary for TensorBoard | |
tf.scalar_summary('loss', self.loss) | |
self.summary = tf.merge_all_summaries() | |
self.summary_writer = tf.train.SummaryWriter(self.LOG_DIR, self.session.graph) | |
self.session.run(tf.initialize_all_variables()) | |
total_steps = 0 | |
step_counts = [] | |
target_weights = self.session.run(self.weights) | |
for episode in range(num_episodes): | |
state = self.env.reset() | |
steps = 0 | |
for step in range(self.MAX_STEPS): | |
# Pick the next action and execute it | |
action = None | |
if random.random() < self.random_action_prob: | |
action = self.env.action_space.sample() | |
else: | |
q_values = self.session.run(self.Q, feed_dict={self.x: [state]}) | |
action = q_values.argmax() | |
self.update_random_action_prob() | |
obs, reward, done, _ = self.env.step(action) | |
# Update replay memory | |
if done: | |
reward = -100 | |
self.replay_memory.append((state, action, reward, obs, done)) | |
if len(self.replay_memory) > self.REPLAY_MEMORY_SIZE: | |
self.replay_memory.pop(0) | |
state = obs | |
# Sample a random minibatch and fetch max Q at s' | |
if len(self.replay_memory) >= self.MINIBATCH_SIZE: | |
minibatch = random.sample(self.replay_memory, self.MINIBATCH_SIZE) | |
next_states = [m[3] for m in minibatch] | |
# TODO: Optimize to skip terminal states | |
feed_dict = {self.x: next_states} | |
feed_dict.update(zip(self.weights, target_weights)) | |
q_values = self.session.run(self.Q, feed_dict=feed_dict) | |
max_q_values = q_values.max(axis=1) | |
# Compute target Q values | |
target_q = np.zeros(self.MINIBATCH_SIZE) | |
target_action_mask = np.zeros((self.MINIBATCH_SIZE, self.output_size), dtype=int) | |
for i in range(self.MINIBATCH_SIZE): | |
_, action, reward, _, terminal = minibatch[i] | |
target_q[i] = reward | |
if not terminal: | |
target_q[i] += self.DISCOUNT_FACTOR * max_q_values[i] | |
target_action_mask[i][action] = 1 | |
# Gradient descent | |
states = [m[0] for m in minibatch] | |
feed_dict = { | |
self.x: states, | |
self.targetQ: target_q, | |
self.targetActionMask: target_action_mask, | |
} | |
_, summary = self.session.run([self.train_op, self.summary], | |
feed_dict=feed_dict) | |
# Write summary for TensorBoard | |
if total_steps % 100 == 0: | |
self.summary_writer.add_summary(summary, total_steps) | |
total_steps += 1 | |
steps += 1 | |
if done: | |
break | |
step_counts.append(steps) | |
mean_steps = np.mean(step_counts[-100:]) | |
print("Training episode = {}, Total steps = {}, Last-100 mean steps = {}" | |
.format(episode, total_steps, mean_steps)) | |
# Update target network | |
if episode % self.TARGET_UPDATE_FREQ == 0: | |
target_weights = self.session.run(self.weights) | |
def update_random_action_prob(self): | |
self.random_action_prob *= self.RANDOM_ACTION_DECAY | |
if self.random_action_prob < self.MIN_RANDOM_ACTION_PROB: | |
self.random_action_prob = self.MIN_RANDOM_ACTION_PROB | |
def play(self): | |
state = self.env.reset() | |
done = False | |
steps = 0 | |
while not done and steps < 200: | |
self.env.render() | |
q_values = self.session.run(self.Q, feed_dict={self.x: [state]}) | |
action = q_values.argmax() | |
state, _, done, _ = self.env.step(action) | |
steps += 1 | |
return steps | |
if __name__ == '__main__': | |
dqn = DQN('CartPole-v0') | |
dqn.init_network() | |
dqn.env.monitor.start('/tmp/cartpole', force=True) | |
dqn.train() | |
dqn.env.monitor.close() | |
res = [] | |
for i in range(100): | |
steps = dqn.play() | |
print("Test steps = ", steps) | |
res.append(steps) | |
print("Mean steps = ", sum(res) / len(res)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hey Viswanath
I tried running your code. Originally Tensorflow was giving me a shape error on the bias variables. I was able to fix this by putting hard brackets around the shape values ie
instead of
After making those changes everything seems to work.