Created
June 28, 2016 05:18
-
-
Save viswanathgs/ca9788020cfcc7849b9181d9239a2ef4 to your computer and use it in GitHub Desktop.
DQN for OpenAI Gym CartPole v0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
import random | |
import numpy as np | |
import tensorflow as tf | |
class DQN: | |
REPLAY_MEMORY_SIZE = 10000 | |
RANDOM_ACTION_DECAY = 0.99 | |
MIN_RANDOM_ACTION_PROB = 0.1 | |
HIDDEN1_SIZE = 20 | |
HIDDEN2_SIZE = 20 | |
NUM_EPISODES = 10000 | |
MAX_STEPS = 1000 | |
LEARNING_RATE = 0.001 | |
MINIBATCH_SIZE = 30 | |
DISCOUNT_FACTOR = 0.9 | |
TARGET_UPDATE_FREQ = 300 | |
REG_FACTOR = 0.001 | |
LOG_DIR = '/tmp/dqn' | |
random_action_prob = 0.5 | |
replay_memory = [] | |
def __init__(self, env): | |
self.env = gym.make(env) | |
assert len(self.env.observation_space.shape) == 1 | |
self.input_size = self.env.observation_space.shape[0] | |
self.output_size = self.env.action_space.n | |
def init_network(self): | |
# Inference | |
self.x = tf.placeholder(tf.float32, [None, self.input_size]) | |
with tf.name_scope('hidden1'): | |
W1 = tf.Variable( | |
tf.truncated_normal([self.input_size, self.HIDDEN1_SIZE], | |
stddev=0.01), name='W1') | |
b1 = tf.Variable(tf.zeros(self.HIDDEN1_SIZE), name='b1') | |
h1 = tf.nn.tanh(tf.matmul(self.x, W1) + b1) | |
with tf.name_scope('hidden2'): | |
W2 = tf.Variable( | |
tf.truncated_normal([self.HIDDEN1_SIZE, self.HIDDEN2_SIZE], | |
stddev=0.01), name='W2') | |
b2 = tf.Variable(tf.zeros(self.HIDDEN2_SIZE), name='b2') | |
h2 = tf.nn.tanh(tf.matmul(h1, W2) + b2) | |
with tf.name_scope('output'): | |
W3 = tf.Variable( | |
tf.truncated_normal([self.HIDDEN2_SIZE, self.output_size], | |
stddev=0.01), name='W3') | |
b3 = tf.Variable(tf.zeros(self.output_size), name='b3') | |
self.Q = tf.matmul(h2, W3) + b3 | |
self.weights = [W1, b1, W2, b2, W3, b3] | |
# Loss | |
self.targetQ = tf.placeholder(tf.float32, [None]) | |
self.targetActionMask = tf.placeholder(tf.float32, [None, self.output_size]) | |
# TODO: Optimize this | |
q_values = tf.reduce_sum(tf.mul(self.Q, self.targetActionMask), | |
reduction_indices=[1]) | |
self.loss = tf.reduce_mean(tf.square(tf.sub(q_values, self.targetQ))) | |
# Reguralization | |
for w in [W1, W2, W3]: | |
self.loss += self.REG_FACTOR * tf.reduce_sum(tf.square(w)) | |
# Training | |
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE) | |
global_step = tf.Variable(0, name='global_step', trainable=False) | |
self.train_op = optimizer.minimize(self.loss, global_step=global_step) | |
def train(self, num_episodes=NUM_EPISODES): | |
self.session = tf.Session() | |
# Summary for TensorBoard | |
tf.scalar_summary('loss', self.loss) | |
self.summary = tf.merge_all_summaries() | |
self.summary_writer = tf.train.SummaryWriter(self.LOG_DIR, self.session.graph) | |
self.session.run(tf.initialize_all_variables()) | |
total_steps = 0 | |
step_counts = [] | |
target_weights = self.session.run(self.weights) | |
for episode in range(num_episodes): | |
state = self.env.reset() | |
steps = 0 | |
for step in range(self.MAX_STEPS): | |
# Pick the next action and execute it | |
action = None | |
if random.random() < self.random_action_prob: | |
action = self.env.action_space.sample() | |
else: | |
q_values = self.session.run(self.Q, feed_dict={self.x: [state]}) | |
action = q_values.argmax() | |
self.update_random_action_prob() | |
obs, reward, done, _ = self.env.step(action) | |
# Update replay memory | |
if done: | |
reward = -100 | |
self.replay_memory.append((state, action, reward, obs, done)) | |
if len(self.replay_memory) > self.REPLAY_MEMORY_SIZE: | |
self.replay_memory.pop(0) | |
state = obs | |
# Sample a random minibatch and fetch max Q at s' | |
if len(self.replay_memory) >= self.MINIBATCH_SIZE: | |
minibatch = random.sample(self.replay_memory, self.MINIBATCH_SIZE) | |
next_states = [m[3] for m in minibatch] | |
# TODO: Optimize to skip terminal states | |
feed_dict = {self.x: next_states} | |
feed_dict.update(zip(self.weights, target_weights)) | |
q_values = self.session.run(self.Q, feed_dict=feed_dict) | |
max_q_values = q_values.max(axis=1) | |
# Compute target Q values | |
target_q = np.zeros(self.MINIBATCH_SIZE) | |
target_action_mask = np.zeros((self.MINIBATCH_SIZE, self.output_size), dtype=int) | |
for i in range(self.MINIBATCH_SIZE): | |
_, action, reward, _, terminal = minibatch[i] | |
target_q[i] = reward | |
if not terminal: | |
target_q[i] += self.DISCOUNT_FACTOR * max_q_values[i] | |
target_action_mask[i][action] = 1 | |
# Gradient descent | |
states = [m[0] for m in minibatch] | |
feed_dict = { | |
self.x: states, | |
self.targetQ: target_q, | |
self.targetActionMask: target_action_mask, | |
} | |
_, summary = self.session.run([self.train_op, self.summary], | |
feed_dict=feed_dict) | |
# Write summary for TensorBoard | |
if total_steps % 100 == 0: | |
self.summary_writer.add_summary(summary, total_steps) | |
total_steps += 1 | |
steps += 1 | |
if done: | |
break | |
step_counts.append(steps) | |
mean_steps = np.mean(step_counts[-100:]) | |
print("Training episode = {}, Total steps = {}, Last-100 mean steps = {}" | |
.format(episode, total_steps, mean_steps)) | |
# Update target network | |
if episode % self.TARGET_UPDATE_FREQ == 0: | |
target_weights = self.session.run(self.weights) | |
def update_random_action_prob(self): | |
self.random_action_prob *= self.RANDOM_ACTION_DECAY | |
if self.random_action_prob < self.MIN_RANDOM_ACTION_PROB: | |
self.random_action_prob = self.MIN_RANDOM_ACTION_PROB | |
def play(self): | |
state = self.env.reset() | |
done = False | |
steps = 0 | |
while not done and steps < 200: | |
self.env.render() | |
q_values = self.session.run(self.Q, feed_dict={self.x: [state]}) | |
action = q_values.argmax() | |
state, _, done, _ = self.env.step(action) | |
steps += 1 | |
return steps | |
if __name__ == '__main__': | |
dqn = DQN('CartPole-v0') | |
dqn.init_network() | |
dqn.env.monitor.start('/tmp/cartpole', force=True) | |
dqn.train() | |
dqn.env.monitor.close() | |
res = [] | |
for i in range(100): | |
steps = dqn.play() | |
print("Test steps = ", steps) | |
res.append(steps) | |
print("Mean steps = ", sum(res) / len(res)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
It keeps falling on one side. For example, if initially the pole starts falling towards left, the agent just tries hard to prolong the eventual falling of the pole to the left but doesn't try to go to the left side of the pole and balance. What must be the problem?