-
-
Save viveksck/dd134857f1103eb7b4ce to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext | |
import numpy as np | |
from sklearn.cross_validation import train_test_split, Bootstrap | |
from sklearn.datasets import make_classification | |
from sklearn.metrics import accuracy_score | |
from sklearn.tree import DecisionTreeClassifier | |
def run(sc): | |
def zero_matrix(n, m): | |
return np.zeros(n*m, dtype = int).reshape(n, m) | |
def vote_increment(y_est): | |
increment = zero_matrix(y_est.size, n_ys) | |
increment[np.arange(y_est.size), y_est] = 1 | |
return increment # test point x class matrix with 1s marking the estimator prediction | |
X, y = make_classification() | |
X_train, X_test, y_train, y_test = train_test_split(X, y) | |
n_test = X_test.shape[0] | |
n_ys = np.unique(y_train).size | |
model = DecisionTreeClassifier() | |
# Partition the training data into random sub-samples with replacement. | |
samples = sc.parallelize(Bootstrap(y.size)) | |
# Train a model for each sub-sample and apply it to the test data. | |
vote_tally = samples.map(lambda (index, _): | |
model.fit(X[index], y[index]).predict(X_test) | |
).map(vote_increment).fold(zero_matrix(n_test, n_ys), np.add) # Take the learner majority vote. | |
y_estimate_vote = np.argmax(vote_tally, axis = 1) | |
return accuracy_score(y_test, y_estimate_vote) | |
if __name__ == '__main__': | |
print run(SparkContext("local", "Boost")) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment