Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save vladiant/5b288397cdaac90d24f0bba7009513e3 to your computer and use it in GitHub Desktop.
Save vladiant/5b288397cdaac90d24f0bba7009513e3 to your computer and use it in GitHub Desktop.
Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)
Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)
https://www.youtube.com/watch?v=cPOtULagNnI
Python + Deep Learning
Robotics with Sakshay
https://www.youtube.com/c/roboticswithsakshay/videos
* Road Segmentation
* 2D Object Detection (yolo)
* Object tracking (deep sought)
* 3D data visualisation
* Multi task learning (depth estimation & semantic segmentation)
* 3D object detection
* Bird's eye view (transformers)
⌨️ (0:02:16) Fully Convolutional Network | Road Segmentation
πŸ”— Kaggle Dataset: https://www.kaggle.com/sakshaymahna/kittiroadsegmentation
πŸ”— Kaggle Notebook: https://www.kaggle.com/sakshaymahna/fully-convolutional-network
πŸ”— KITTI Dataset: http://www.cvlibs.net/datasets/kitti/
πŸ”— Fully Convolutional Network Paper: https://arxiv.org/abs/1411.4038
πŸ”— Hand Crafted Road Segmentation: https://www.youtube.com/watch?v=hrin-qTn4L4 (Udacity Self Driving Cars Advanced Lane Detection)
πŸ”— Deep Learning and CNNs: https://www.youtube.com/watch?v=aircAruvnKk (But what is a neural network? | Chapter 1, Deep learning)
Transposed convolutions - better than upscale interpolations!
VGG16 - encoder, decoder
Replace Add with Concatenate
Replace Concatenate with Conv2DTranspose (seems not that great!)
⌨️ (0:20:45) YOLO | 2D Object Detection
πŸ”— Kaggle Competition/Dataset: https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles
πŸ”— Visualization Notebook: https://www.kaggle.com/sakshaymahna/lyft-3d-object-detection-eda
πŸ”— YOLO Notebook: https://www.kaggle.com/sakshaymahna/yolov3-keras-2d-object-detection
πŸ”— Playlist on Fundamentals of Object Detection: https://www.youtube.com/playlist?list=PL_IHmaMAvkVxdDOBRg2CbcJBq9SY7ZUvs
πŸ”— Blog on YOLO: https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
πŸ”— YOLO Paper: https://arxiv.org/abs/1506.02640
⌨️ (0:35:51) Deep SORT | Object Tracking
πŸ”— Dataset: https://www.kaggle.com/sakshaymahna/kittiroadsegmentation
πŸ”— Notebook/Code: https://www.kaggle.com/sakshaymahna/deepsort/notebook
πŸ”— Blog on Deep SORT: https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f
πŸ”— Deep SORT Paper: https://arxiv.org/abs/1703.07402
πŸ”— Kalman Filter: https://www.youtube.com/playlist?list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr
πŸ”— Hungarian Algorithm: https://www.geeksforgeeks.org/hungarian-algorithm-assignment-problem-set-1-introduction/
πŸ”— Cosine Distance Metric: https://www.machinelearningplus.com/nlp/cosine-similarity/
πŸ”— Mahalanobis Distance: https://www.machinelearningplus.com/statistics/mahalanobis-distance/
πŸ”— YOLO Algorithm: https://youtu.be/C3qmhPVUXiE
Simple Online Realtime Tracking
Bounding box prediction, Kalman Filters, Linear Approximation, IoU matching techniques
Deal with occlusion; Linear velocity model
Mahalanobis distance -> similarity between point and probability distribution
Longer occlusion periods present a problem
⌨️ (0:52:37) KITTI 3D Data Visualization | Homogenous Transformations
πŸ”— Dataset: https://www.kaggle.com/garymk/kitti-3d-object-detection-dataset
πŸ”— Notebook/Code: https://www.kaggle.com/sakshaymahna/lidar-data-visualization/notebook
πŸ”— LIDAR: https://geoslam.com/what-is-lidar/
πŸ”— Tesla doesn't use LIDAR: https://towardsdatascience.com/why-tesla-wont-use-lidar-57c325ae2ed5
Homogeneous transformations; point clouds;
⌨️ (1:06:45) Multi Task Attention Network (MTAN) | Multi Task Learning
πŸ”— Dataset: https://www.kaggle.com/sakshaymahna/cityscapes-depth-and-segmentation
πŸ”— Notebook/Code: https://www.kaggle.com/sakshaymahna/mtan-multi-task-attention-network
πŸ”— Data Visualization: https://www.kaggle.com/sakshaymahna/exploratory-data-analysis
πŸ”— MTAN Paper: https://arxiv.org/abs/1803.10704
πŸ”— Blog on Multi Task Learning: https://ruder.io/multi-task/
πŸ”— Image Segmentation and FCN: https://youtu.be/U_v0Tovp4XQ
Encoder / Decoder / Attention submodules
⌨️ (1:20:58) SFA 3D | 3D Object Detection
πŸ”— Dataset: https://www.kaggle.com/garymk/kitti-3d-object-detection-dataset
πŸ”— Notebook/Code: https://www.kaggle.com/sakshaymahna/sfa3d
πŸ”— Data Visualization: https://www.kaggle.com/sakshaymahna/l...
πŸ”— Data Visualization Video: https://www.youtube.com/watch?v=tb1H42kE0eE
πŸ”— SFA3D GitHub Repository: https://github.com/maudzung/SFA3D
πŸ”— Feature Pyramid Networks: https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
πŸ”— Keypoint Feature Pyramid Network: https://arxiv.org/pdf/2001.03343.pdf
πŸ”— Heat Maps: https://en.wikipedia.org/wiki/Heat_map
πŸ”— Focal Loss: https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7
πŸ”— L1 Loss: https://afteracademy.com/blog/what-are-l1-and-l2-loss-functions
πŸ”— Balanced L1 Loss: https://paperswithcode.com/method/balanced-l1-loss
πŸ”— Learning Rate Decay: https://medium.com/analytics-vidhya/learning-rate-decay-and-methods-in-deep-learning-2cee564f910b
πŸ”— Cosine Annealing: https://paperswithcode.com/method/cosine-annealing
Super Fast and Accurate 3D Object detection
Feature Pyramid network
⌨️ (1:40:24) UNetXST | Camera to Bird's Eye View
πŸ”— Dataset: https://www.kaggle.com/sakshaymahna/semantic-segmentation-bev
πŸ”— Dataset Visualization: https://www.kaggle.com/sakshaymahna/data-visualization
πŸ”— Notebook/Code: https://www.kaggle.com/sakshaymahna/unetxst
πŸ”— UNetXST Paper: https://arxiv.org/pdf/2005.04078.pdf
πŸ”— UNetXST Github Repository: https://github.com/ika-rwth-aachen/Cam2BEV
πŸ”— UNet: https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
πŸ”— Image Transformations: https://kevinzakka.github.io/2017/01/10/stn-part1/
πŸ”— Spatial Transformer Networks: https://kevinzakka.github.io/2017/01/18/stn-part2/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment