Last active
October 31, 2020 22:27
-
-
Save vladiant/5f56c08c2543e75938e709340ac5766d to your computer and use it in GitHub Desktop.
3D points curve fitting
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/evn python | |
import numpy as np | |
import scipy.linalg | |
from mpl_toolkits.mplot3d import Axes3D | |
import matplotlib.pyplot as plt | |
# some 3-dim points | |
mean = np.array([0.0,0.0,0.0]) | |
cov = np.array([[1.0,-0.5,0.8], [-0.5,1.1,0.0], [0.8,0.0,1.0]]) | |
data = np.random.multivariate_normal(mean, cov, 50) | |
# regular grid covering the domain of the data | |
X,Y = np.meshgrid(np.arange(-3.0, 3.0, 0.5), np.arange(-3.0, 3.0, 0.5)) | |
XX = X.flatten() | |
YY = Y.flatten() | |
order = 1 # 1: linear, 2: quadratic | |
if order == 1: | |
# best-fit linear plane | |
A = np.c_[data[:,0], data[:,1], np.ones(data.shape[0])] | |
C,_,_,_ = scipy.linalg.lstsq(A, data[:,2]) # coefficients | |
# evaluate it on grid | |
Z = C[0]*X + C[1]*Y + C[2] | |
# or expressed using matrix/vector product | |
#Z = np.dot(np.c_[XX, YY, np.ones(XX.shape)], C).reshape(X.shape) | |
elif order == 2: | |
# best-fit quadratic curve | |
A = np.c_[np.ones(data.shape[0]), data[:,:2], np.prod(data[:,:2], axis=1), data[:,:2]**2] | |
C,_,_,_ = scipy.linalg.lstsq(A, data[:,2]) | |
# evaluate it on a grid | |
Z = np.dot(np.c_[np.ones(XX.shape), XX, YY, XX*YY, XX**2, YY**2], C).reshape(X.shape) | |
# plot points and fitted surface | |
fig = plt.figure() | |
ax = fig.gca(projection='3d') | |
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, alpha=0.2) | |
ax.scatter(data[:,0], data[:,1], data[:,2], c='r', s=50) | |
plt.xlabel('X') | |
plt.ylabel('Y') | |
ax.set_zlabel('Z') | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
from mpl_toolkits.mplot3d import Axes3D | |
import matplotlib.pyplot as plt | |
# some 3-dim points | |
mean = np.array([0.0,0.0,0.0]) | |
cov = np.array([[1.0,-0.5,0.8], [-0.5,1.1,0.0], [0.8,0.0,1.0]]) | |
data = np.random.multivariate_normal(mean, cov, 50) | |
# regular grid covering the domain of the data | |
X,Y = np.meshgrid(np.arange(-3.0, 3.0, 0.5), np.arange(-3.0, 3.0, 0.5)) | |
XX = X.flatten() | |
YY = Y.flatten() | |
# best-fit linear plane | |
model = LinearRegression() | |
model.fit(data[:,:2], data[:,2]) | |
# evaluate it on grid | |
Z = model.coef_[0]*X + model.coef_[1]*Y + model.intercept_ | |
print("Model score: ", model.score(data[:,:2], data[:,2])) | |
# plot points and fitted surface | |
fig = plt.figure() | |
ax = fig.gca(projection='3d') | |
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, alpha=0.2) | |
ax.scatter(data[:,0], data[:,1], data[:,2], c='r', s=50) | |
plt.xlabel('X') | |
plt.ylabel('Y') | |
ax.set_zlabel('Z') | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
""" | |
========================================================= | |
Principal components analysis (PCA) | |
========================================================= | |
These figures aid in illustrating how a point cloud | |
can be very flat in one direction--which is where PCA | |
comes in to choose a direction that is not flat. | |
""" | |
print(__doc__) | |
# Authors: Gael Varoquaux | |
# Jaques Grobler | |
# Kevin Hughes | |
# License: BSD 3 clause | |
from sklearn.decomposition import PCA | |
from mpl_toolkits.mplot3d import Axes3D | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import stats | |
# ############################################################################# | |
# Create the data | |
e = np.exp(1) | |
np.random.seed(4) | |
def pdf(x): | |
return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) | |
+ stats.norm(scale=4 / e).pdf(x)) | |
y = np.random.normal(scale=0.5, size=(30000)) | |
x = np.random.normal(scale=0.5, size=(30000)) | |
z = np.random.normal(scale=0.1, size=len(x)) | |
density = pdf(x) * pdf(y) | |
pdf_z = pdf(5 * z) | |
density *= pdf_z | |
a = x + y | |
b = 2 * y | |
c = a - b + z | |
norm = np.sqrt(a.var() + b.var()) | |
a /= norm | |
b /= norm | |
# ############################################################################# | |
# Plot the figures | |
def plot_figs(fig_num, elev, azim): | |
fig = plt.figure(fig_num, figsize=(4, 3)) | |
plt.clf() | |
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) | |
ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) | |
Y = np.c_[a, b, c] | |
# Using SciPy's SVD, this would be: | |
# _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) | |
pca = PCA(n_components=3) | |
pca.fit(Y) | |
pca_score = pca.explained_variance_ratio_ | |
V = pca.components_ | |
x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T | |
x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] | |
y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] | |
z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] | |
x_pca_plane.shape = (2, 2) | |
y_pca_plane.shape = (2, 2) | |
z_pca_plane.shape = (2, 2) | |
ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) | |
ax.w_xaxis.set_ticklabels([]) | |
ax.w_yaxis.set_ticklabels([]) | |
ax.w_zaxis.set_ticklabels([]) | |
elev = -40 | |
azim = -80 | |
plot_figs(1, elev, azim) | |
elev = 30 | |
azim = 20 | |
plot_figs(2, elev, azim) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment