Created
May 8, 2020 00:26
-
-
Save vlasenkoalexey/3d8838e6f6f335a575a7310dc28880fd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import datetime | |
import tensorflow as tf | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from IPython.display import clear_output | |
class TrainTimeCallback(tf.keras.callbacks.Callback): | |
def on_epoch_begin(self, epoch, logs=None): | |
self.epoch_start_time = datetime.datetime.now() | |
def on_epoch_end(self, epoch, logs=None): | |
logging.info('\nepoch train time: (hh:mm:ss.ms) {}'.format( | |
datetime.datetime.now() - self.epoch_start_time)) | |
if not self.params is None: | |
if 'steps' in self.params and self.params['steps']: | |
epoch_milliseconds = (datetime.datetime.now( | |
) - self.epoch_start_time).total_seconds() * 1000 | |
logging.info( | |
'{} ms/step'.format(epoch_milliseconds / self.params['steps'])) | |
if BATCH_SIZE is not None: | |
logging.info('{} microseconds/example'.format( | |
1000 * epoch_milliseconds / self.params['steps'] / BATCH_SIZE)) | |
class PlotLossesCallback(tf.keras.callbacks.Callback): | |
def on_train_begin(self, logs={}): | |
self.i = 0 | |
self.x = [] | |
self.losses = [] | |
self.val_losses = [] | |
self.fig = plt.figure() | |
self.logs = [] | |
self.learning_rates = [] | |
def on_epoch_end(self, epoch, logs={}): | |
self.logs.append(logs) | |
self.x.append(self.i) | |
self.losses.append(logs.get('loss')) | |
self.val_losses.append(logs.get('val_loss')) | |
self.learning_rates.append(tf.keras.backend.get_value(self.model.optimizer.lr)) | |
self.i += 1 | |
clear_output(wait=True) | |
fig, axs = plt.subplots(1,2,figsize=(12,6)) | |
fig.suptitle('Vertically stacked subplots') | |
losses_plt = axs[0] | |
losses_plt.plot(self.x, self.losses, label="loss") | |
losses_plt.plot(self.x, self.val_losses, label="val_loss") | |
losses_plt.legend() | |
lr_plt = axs[1] | |
lr_plt.plot(self.x, self.learning_rates, label="learning rate") | |
lr_plt.legend() | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment