Last active
January 30, 2017 00:25
-
-
Save vmonaco/209647bc6438b1d045d738156179367f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Identify users by mouse click timings. | |
Train a POHMM for each user, one sample, and test using the remaining samples. | |
Using the clicks from task 3 (Star Bubbles) in the HCI dataset: | |
https://bitbucket.org/vmonaco/dataset-four-hci-tasks/ | |
$ python hci_clicks_example.py data/task3.click.csv | |
Accuracy (88 samples): 0.375 | |
Training clicks/sample: | |
count 19.000000 | |
mean 80.526316 | |
std 46.797873 | |
min 4.000000 | |
25% 43.000000 | |
50% 84.000000 | |
75% 107.000000 | |
max 160.000000 | |
""" | |
import sys | |
import numpy as np | |
import pandas as pd | |
from pohmm import Pohmm, PohmmClassifier | |
def features(x): | |
tau = x['timepress'].diff().fillna(x['timepress'].diff().median()) | |
duration = x['timerelease'] - x['timepress'] | |
tau[tau==0] = tau.median() | |
duration[duration==0] = duration.median() | |
return pd.DataFrame({'tau': tau, 'duration': duration, 'button': x['button']}, index=x.index) | |
def pohmm_factory(): | |
hmm = Pohmm(n_hidden_states=2, init_spread=2, thresh=1e-6, max_iter=1000, | |
emissions=[('tau','lognormal'),('duration','lognormal')], smoothing='freq') | |
return hmm | |
if __name__ == '__main__': | |
if len(sys.argv) != 2: | |
print('Usage: $ python hci_clicks_example.py <clicks_file.csv>') | |
sys.exit(1) | |
fname = sys.argv[1] | |
df_raw = pd.read_csv(fname, index_col=[0,1]) | |
df = df_raw.groupby(level=[0,1]).apply(features) | |
train = df.groupby(level=[0]).apply(lambda x: x[x.index.get_level_values(1) == x.index.get_level_values(1).unique()[0]]).reset_index(level=0, drop=True) | |
test = df.groupby(level=[0]).apply(lambda x: x[x.index.get_level_values(1).isin(x.index.get_level_values(1).unique()[1:])]).reset_index(level=0, drop=True) | |
cl = PohmmClassifier(pohmm_factory) | |
train_user_session, train_samples = zip(*train.groupby(level=[0,1])) | |
train_labels, _ = zip(*train_user_session) | |
cl.fit_df(train_labels, train_samples, pstate_col='button') | |
test_user_session, test_samples = zip(*test.groupby(level=[0,1])) | |
test_labels, _ = zip(*test_user_session) | |
predict_labels = [] | |
for sample in test_samples: | |
predict_labels.append(cl.predict_df(sample, pstate_col='button')[0]) | |
acc = (np.array(predict_labels)==np.array(test_labels)).sum()/len(test_labels) | |
print('Accuracy (%d samples):' % len(test_labels), acc) | |
print('Training clicks/sample:\n', train.groupby(level=[0,1]).size().describe()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment