Last active
November 2, 2024 10:27
-
-
Save vndee/6bb688170c2d16d17676a60ed896c922 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def generate( | |
self, | |
prompt_tokens: List[List[int]], | |
max_gen_len: int, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
logprobs: bool = False, | |
echo: bool = False, | |
) -> Tuple[List[List[int]], Optional[List[List[float]]]]: | |
# .... | |
# .... | |
for cur_pos in range(min_prompt_len, total_len): | |
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) | |
if temperature > 0: | |
probs = torch.softmax(logits[:, -1] / temperature, dim=-1) | |
next_token = sample_top_p(probs, top_p) | |
else: | |
next_token = torch.argmax(logits[:, -1], dim=-1) | |
# .... | |
# .... | |
def sample_top_p(probs, p): | |
""" | |
Perform top-p (nucleus) sampling on a probability distribution. | |
Args: | |
probs (torch.Tensor): Probability distribution tensor. | |
p (float): Probability threshold for top-p sampling. | |
Returns: | |
torch.Tensor: Sampled token indices. | |
Note: | |
Top-p sampling selects the smallest set of tokens whose cumulative probability mass | |
exceeds the threshold p. The distribution is renormalized based on the selected tokens. | |
""" | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
probs_sum = torch.cumsum(probs_sort, dim=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
next_token = torch.multinomial(probs_sort, num_samples=1) | |
next_token = torch.gather(probs_idx, -1, next_token) | |
return next_token |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment