Created
June 8, 2016 17:33
-
-
Save volkancirik/8780878a1a2cc6b1101658b7164b476c to your computer and use it in GitHub Desktop.
extract cnn features
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Make sure that caffe is on the python path: | |
caffe_root = '/usr0/bin/caffe/' # this file is expected to be in {caffe_root}/examples | |
import sys | |
sys.path.insert(0, caffe_root + 'python') | |
import caffe | |
from images import crop_image | |
import numpy as np | |
mean = 'caffedata/ilsvrc_2012_mean.npy' | |
class CNN(object): | |
def __init__(self, deploy, model, mean=mean, batch_size=100, width=224, height=224): | |
self.deploy = deploy | |
self.model = model | |
self.mean = mean | |
self.batch_size = batch_size | |
self.net, self.transformer = self.get_net() | |
self.net.blobs['data'].reshape(self.batch_size, 3, height, width) | |
self.width = width | |
self.height = height | |
def get_net(self): | |
caffe.set_mode_gpu() | |
net = caffe.Net(self.deploy, self.model, caffe.TEST) | |
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) | |
transformer.set_transpose('data', (2,0,1)) | |
# transformer.set_mean('data', np.load(self.mean).mean(1).mean(1)) | |
transformer.set_mean('data', np.array([103.939, 116.779, 123.68])) | |
transformer.set_raw_scale('data', 255) | |
transformer.set_channel_swap('data', (2,1,0)) | |
return net, transformer | |
def get_features(self, image_list, layers='fc7', layer_sizes=[4096]): | |
iter_until = len(image_list) + self.batch_size | |
all_feats = np.zeros([len(image_list)] + layer_sizes) | |
batch_count = 0 | |
for start, end in zip(range(0, iter_until, self.batch_size), \ | |
range(self.batch_size, iter_until, self.batch_size)): | |
image_batch_file = image_list[start:end] | |
image_batch = np.array(map(lambda x: crop_image(x, target_width=self.width, target_height=self.height), image_batch_file)) | |
caffe_in = np.zeros(np.array(image_batch.shape)[[0,3,1,2]], dtype=np.float32) | |
for idx, in_ in enumerate(image_batch): | |
caffe_in[idx] = self.transformer.preprocess('data', in_) | |
out = self.net.forward_all(blobs=[layers], **{'data':caffe_in}) | |
feats = out[layers] | |
all_feats[start:end] = feats | |
batch_count += 1 | |
print("processing batch #: %d" % batch_count) | |
return all_feats |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment