Created
March 30, 2015 18:03
-
-
Save volpino/8afc58b4e3145a786ba0 to your computer and use it in GitHub Desktop.
0ctf 2015 - rsaquine
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import socket | |
import telnetlib | |
from subprocess import Popen, PIPE | |
from fractions import gcd | |
def recv_until(s, string): | |
buf = "" | |
while not buf.endswith(string): | |
r = s.recv(1) | |
buf += r | |
if len(r) == 0: | |
print "remote server terminated connection: '%s'" % buf | |
raise socket.error | |
return buf[:-len(string)] | |
def interact(s): | |
t = telnetlib.Telnet() | |
t.sock = s | |
t.interact() | |
exit() | |
def mul_inv(a, b): | |
b0 = b | |
x0, x1 = 0, 1 | |
if b == 1: return 1 | |
while a > 1: | |
q = a / b | |
a, b = b, a%b | |
x0, x1 = x1 - q * x0, x0 | |
if x1 < 0: x1 += b0 | |
return x1 | |
def chinese_remainder(n, a): | |
lena = len(a) | |
p = i = prod = 1; sm = 0 | |
for i in range(lena): prod *= n[i] | |
for i in range(lena): | |
p = prod / n[i] | |
sm += a[i] * mul_inv(p, n[i]) * p | |
return sm % prod | |
s = socket.create_connection(("202.112.26.105", "55537")) | |
for h in range(1, 31): | |
recv_until(s, "N = ") | |
n = int(recv_until(s, "\n")) | |
recv_until(s, "e = ") | |
e = int(recv_until(s, "\n")) | |
recv_until(s, "Total ") | |
cnt = int(recv_until(s, " ")) | |
print "Round %d: e = %d, N = %d, total: %d" % (h, e, n, cnt) | |
quines = set([0, 1, -1 % n]) | |
factors = [] | |
output = Popen(["./msieve", "-v", str(n)], stdout=PIPE).communicate()[0] | |
for line in output.split("\n"): | |
if "factor:" in line: | |
factors.append(int(line.split("factor: ")[1])) | |
p, q = factors | |
mod_p = [0] + [(i+1)*(p-1)/gcd(e-1, p-1) for i in range(gcd(e-1, p-1))] | |
mod_q = [0] + [(i+1)*(q-1)/gcd(e-1, q-1) for i in range(gcd(e-1, q-1))] | |
print mod_p | |
print mod_q | |
for g in xrange(3, 1000, 2): | |
for mp in mod_p: | |
for mq in mod_q: | |
quine = chinese_remainder([p, q], [pow(g, mp, p), pow(g, mq, q)]) | |
quines.add(quine) | |
for mp in mod_p: | |
quine = chinese_remainder([p, q], [pow(g, mp, p), 0]) | |
quines.add(quine) | |
for mq in mod_q: | |
quine = chinese_remainder([p, q], [0, pow(g, mq, q)]) | |
quines.add(quine) | |
print quines, len(quines) | |
for i, quine in enumerate(quines): | |
s.send(str(quine).replace("L", "")+"\n") | |
print s.recv(100) | |
if i == 199: | |
break | |
interact(s) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment