Created
October 26, 2020 02:30
-
-
Save vpeopleonatank/381dea90ee29a1ce33258c846fd6d720 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dataset_type = 'CocoDataset' | |
Classes = ('Hand') | |
data_root = 'data/handdata/' | |
img_norm_cfg = dict( | |
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=False), | |
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict( | |
type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
dict(type='Pad', size_divisor=32), | |
dict(type='SegRescale', scale_factor=0.125), | |
dict(type='DefaultFormatBundle'), | |
dict( | |
type='Collect', | |
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(1333, 800), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict( | |
type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
dict(type='Pad', size_divisor=32), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']) | |
]) | |
] | |
data = dict( | |
samples_per_gpu=1, | |
workers_per_gpu=1, | |
train=dict( | |
type='CocoDataset', | |
ann_file='data/handdata/annotations/hand_instances_train.json', | |
img_prefix='data/handdata/train/', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True, | |
with_seg=False), | |
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict( | |
type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
dict(type='Pad', size_divisor=32), | |
dict(type='SegRescale', scale_factor=0.125), | |
dict(type='DefaultFormatBundle'), | |
dict( | |
type='Collect', | |
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) | |
], | |
seg_prefix='data/coco/stuffthingmaps/train2017/', | |
# classes=('Hand') | |
), | |
val=dict( | |
type='CocoDataset', | |
ann_file='data/handdata/annotations/hand_instances_test.json', | |
img_prefix='data/handdata/test/', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(1333, 800), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict( | |
type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
dict(type='Pad', size_divisor=32), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']) | |
]) | |
], | |
# classes=('Hand') | |
), | |
test=dict( | |
type='CocoDataset', | |
ann_file='data/handdata/annotations/hand_instances_test.json', | |
img_prefix='data/handdata/test/', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(1333, 800), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict( | |
type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
dict(type='Pad', size_divisor=32), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']) | |
]) | |
], | |
# classes=('Hand') | |
)) | |
evaluation = dict(metric=['segm']) | |
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) | |
optimizer_config = dict(grad_clip=None) | |
lr_config = dict( | |
policy='step', | |
warmup='linear', | |
warmup_iters=500, | |
warmup_ratio=0.001, | |
step=[8, 11]) | |
total_epochs = 12 | |
checkpoint_config = dict(interval=1) | |
log_config = dict(interval=50, hooks=[dict(type='TensorboardLoggerHook')]) | |
dist_params = dict(backend='nccl') | |
log_level = 'INFO' | |
load_from = 'https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/detectors/detectors_htc_r50_1x_coco/detectors_htc_r50_1x_coco-329b1453.pth' | |
resume_from = None | |
workflow = [('train', 1)] | |
model = dict( | |
type='HybridTaskCascade', | |
pretrained='torchvision://resnet50', | |
backbone=dict( | |
type='DetectoRS_ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch', | |
conv_cfg=dict(type='ConvAWS'), | |
sac=dict(type='SAC', use_deform=True), | |
stage_with_sac=(False, True, True, True), | |
output_img=True), | |
neck=dict( | |
type='RFP', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
num_outs=5, | |
rfp_steps=2, | |
aspp_out_channels=64, | |
aspp_dilations=(1, 3, 6, 1), | |
rfp_backbone=dict( | |
rfp_inplanes=256, | |
type='DetectoRS_ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
conv_cfg=dict(type='ConvAWS'), | |
sac=dict(type='SAC', use_deform=True), | |
stage_with_sac=(False, True, True, True), | |
pretrained='torchvision://resnet50', | |
style='pytorch')), | |
rpn_head=dict( | |
type='RPNHead', | |
in_channels=256, | |
feat_channels=256, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
scales=[8], | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[1.0, 1.0, 1.0, 1.0]), | |
loss_cls=dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
loss_bbox=dict( | |
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)), | |
roi_head=dict( | |
type='HybridTaskCascadeRoIHead', | |
interleaved=True, | |
mask_info_flow=True, | |
num_stages=3, | |
stage_loss_weights=[1, 0.5, 0.25], | |
bbox_roi_extractor=dict( | |
type='SingleRoIExtractor', | |
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32]), | |
bbox_head=[ | |
dict( | |
type='Shared2FCBBoxHead', | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=1, | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[0.1, 0.1, 0.2, 0.2]), | |
reg_class_agnostic=True, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=False, | |
loss_weight=1.0), | |
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, | |
loss_weight=1.0)), | |
dict( | |
type='Shared2FCBBoxHead', | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=1, | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[0.05, 0.05, 0.1, 0.1]), | |
reg_class_agnostic=True, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=False, | |
loss_weight=1.0), | |
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, | |
loss_weight=1.0)), | |
dict( | |
type='Shared2FCBBoxHead', | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=1, | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[0.033, 0.033, 0.067, 0.067]), | |
reg_class_agnostic=True, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=False, | |
loss_weight=1.0), | |
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) | |
], | |
mask_roi_extractor=dict( | |
type='SingleRoIExtractor', | |
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32]), | |
mask_head=[ | |
dict( | |
type='HTCMaskHead', | |
with_conv_res=False, | |
num_convs=4, | |
in_channels=256, | |
conv_out_channels=256, | |
num_classes=1, | |
loss_mask=dict( | |
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), | |
dict( | |
type='HTCMaskHead', | |
num_convs=4, | |
in_channels=256, | |
conv_out_channels=256, | |
num_classes=1, | |
loss_mask=dict( | |
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), | |
dict( | |
type='HTCMaskHead', | |
num_convs=4, | |
in_channels=256, | |
conv_out_channels=256, | |
num_classes=1, | |
loss_mask=dict( | |
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) | |
], | |
# semantic_roi_extractor=dict( | |
# type='SingleRoIExtractor', | |
# roi_layer=dict(type='RoIAlign', out_size=14, sample_num=0), | |
# out_channels=256, | |
# featmap_strides=[8]), | |
# semantic_head=dict( | |
# type='FusedSemanticHead', | |
# num_ins=5, | |
# fusion_level=1, | |
# num_convs=4, | |
# in_channels=256, | |
# conv_out_channels=256, | |
# num_classes=1, | |
# ignore_label=255, | |
# loss_weight=0.2) | |
)) | |
train_cfg = dict( | |
rpn=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.7, | |
neg_iou_thr=0.3, | |
min_pos_iou=0.3, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='RandomSampler', | |
num=256, | |
pos_fraction=0.5, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=False), | |
allowed_border=0, | |
pos_weight=-1, | |
debug=False), | |
rpn_proposal=dict( | |
nms_across_levels=False, | |
nms_pre=2000, | |
nms_post=2000, | |
max_num=2000, | |
nms_thr=0.7, | |
min_bbox_size=0), | |
rcnn=[ | |
dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0.5, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='RandomSampler', | |
num=512, | |
pos_fraction=0.25, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=True), | |
mask_size=28, | |
pos_weight=-1, | |
debug=False), | |
dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.6, | |
neg_iou_thr=0.6, | |
min_pos_iou=0.6, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='RandomSampler', | |
num=512, | |
pos_fraction=0.25, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=True), | |
mask_size=28, | |
pos_weight=-1, | |
debug=False), | |
dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.7, | |
neg_iou_thr=0.7, | |
min_pos_iou=0.7, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='RandomSampler', | |
num=512, | |
pos_fraction=0.25, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=True), | |
mask_size=28, | |
pos_weight=-1, | |
debug=False) | |
]) | |
test_cfg = dict( | |
rpn=dict( | |
nms_across_levels=False, | |
nms_pre=1000, | |
nms_post=1000, | |
max_num=1000, | |
nms_thr=0.7, | |
min_bbox_size=0), | |
rcnn=dict( | |
score_thr=0.001, | |
nms=dict(type='nms', iou_thr=0.5), | |
max_per_img=100, | |
mask_thr_binary=0.5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment