Skip to content

Instantly share code, notes, and snippets.

@vpeopleonatank
Last active January 13, 2021 08:51
Show Gist options
  • Save vpeopleonatank/e33dc9986a2636443b8ad91a6aa41931 to your computer and use it in GitHub Desktop.
Save vpeopleonatank/e33dc9986a2636443b8ad91a6aa41931 to your computer and use it in GitHub Desktop.
Convert_between_annotation_format
# Modified from labelme2coco repository
# Usage: python convert_matterport_json_to_coco.py path_to_json.json
import argparse
import glob
import json
import os
import numpy as np
import PIL.Image
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
class labelme2coco(object):
def __init__(
self,
maskrcnn_json=[],
save_json_path="./coco.json",
save_category=[],
height=500,
width=500,
):
"""
:param maskrcnn_json: the path to matterport 's maskrcnn_json
:param save_json_path: the path to save new json
"""
self.maskrcnn_json = maskrcnn_json
self.save_json_path = save_json_path
self.save_cat = save_category
self.images = []
self.categories = []
self.annotations = []
self.label = []
self.annID = 1
self.height = height
self.width = width
self.save_json()
def data_transfer(self):
# for num, json_file in enumerate(self.maskrcnn_json):
include_shape = ['polyline', 'polygon']
with open(self.maskrcnn_json, "r") as fp:
data = json.load(fp)
i = 0 # image_id
for d in data:
self.images.append(self.get_image(data, d, i))
for region in data[d]["regions"]:
if (
region is None
or "category_id" not in region["region_attributes"]
or region["shape_attributes"]["name"] not in include_shape
):
continue
label = region["region_attributes"]["category_id"]
if label not in self.save_cat:
continue
if label not in self.label:
self.label.append(label)
all_ptns_x = region["shape_attributes"]["all_points_x"]
all_ptns_y = region["shape_attributes"]["all_points_y"]
points = []
for j in range(len(all_ptns_x)):
points.append((all_ptns_x[j], all_ptns_y[j]))
# if data[d]["filename"] == "12_028.png":
# import ipdb; ipdb.set_trace();
# all_points_x, all_points_y
# points = shapes["points"]
self.annotations.append(self.annotation(points, label, i))
self.annID += 1
i += 1
# Sort all text labels so they are in the same order across data splits.
self.label.sort()
for label in self.label:
self.categories.append(self.category(label))
for annotation in self.annotations:
annotation["category_id"] = self.getcatid(annotation["category_id"])
def get_image(self, data, d, pos):
image = {}
img = None
image["height"] = self.height
image["width"] = self.width
image["id"] = pos
image["file_name"] = data[d]["filename"]
return image
def category(self, label):
category = {}
category["supercategory"] = label[0]
category["id"] = len(self.categories)
category["name"] = label[0]
return category
def annotation(self, points, label, num):
annotation = {}
contour = np.array(points)
x = contour[:, 0]
y = contour[:, 1]
area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
annotation["segmentation"] = [list(np.asarray(points).flatten())]
annotation["iscrowd"] = 0
annotation["area"] = area
annotation["image_id"] = num
annotation["bbox"] = list(map(float, self.getbbox(points)))
annotation["category_id"] = label[0] # self.getcatid(label)
annotation["id"] = self.annID
return annotation
def getcatid(self, label):
for category in self.categories:
if label == category["name"]:
return category["id"]
print("label: {} not in categories: {}.".format(label, self.categories))
exit()
return -1
def getbbox(self, points):
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
return [
left_top_c,
left_top_r,
right_bottom_c - left_top_c,
right_bottom_r - left_top_r,
]
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco["images"] = self.images
data_coco["categories"] = self.categories
data_coco["annotations"] = self.annotations
return data_coco
def save_json(self):
print("save coco json")
self.data_transfer()
self.data_coco = self.data2coco()
print(self.save_json_path)
os.makedirs(
os.path.dirname(os.path.abspath(self.save_json_path)), exist_ok=True
)
# import ipdb; ipdb.set_trace();
json.dump(self.data_coco, open(self.save_json_path, "w"), indent=4, cls=NpEncoder)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="matterport maskrcnn to coco data json file."
)
parser.add_argument(
"mask_json",
help="Directory to labelme images and annotation json files.",
type=str,
)
parser.add_argument(
"--output", help="Output json file path.", default="train_coco_debug1.json"
)
args = parser.parse_args()
# labelme_json = glob.glob(os.path.join(args.mask_json, "*.json"))
save_cat = ["7", "8"] # 7: left hand, 8: right hand
width, height = 1920, 1440
labelme2coco(args.mask_json, args.output, save_cat, height, width)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment