Created
February 5, 2013 01:56
-
-
Save vr2262/4711471 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
# Get the value of n and initialize the matrices A and B. | |
with open("input.txt", "r") as matrix_info: | |
n = int(matrix_info.readline()) | |
assert n == 2 ** math.log(n, 2), "The first line must be a power of 2." | |
mat_a = [] | |
mat_b = [] | |
for line_number in xrange(2 * n): | |
row_info = matrix_info.readline().split() | |
row_frmt = map(float, row_info) | |
if line_number < n: | |
mat_a.append(row_frmt) | |
else: | |
mat_b.append(row_frmt) | |
def col_select(mat, j): | |
# Select column j from matrix mat. | |
return [row[j] for row in mat] | |
def dot_product(vec_a, vec_b): | |
# Return the dot product of two vectors vec_a and vec_b | |
return sum(vec_a[i] * vec_b[i] for i in xrange(len(vec_a))) | |
def slicer(mat, (i_i, i_f), (j_i, j_f)): | |
# Return a section of a matrix mat defined by two pairs of i | |
# and j indices. | |
return [[mat[i][j] for j in xrange(j_i, j_f)] for i in xrange(i_i, i_f)] | |
def mat_add(a, b): | |
# Add matrices a and b. | |
c = [[[] for _ in xrange(len(a))] for _ in xrange(len(b[0]))] | |
for i in xrange(len(a)): | |
for j in xrange(len(b[0])): | |
c[i][j] = a[i][j] + b[i][j] | |
return c | |
def mat_sub(a, b): | |
# Subtract matrix b from matrix a. | |
c = [[[] for _ in xrange(len(a))] for _ in xrange(len(b[0]))] | |
for i in xrange(len(a)): | |
for j in xrange(len(b[0])): | |
c[i][j] = a[i][j] - b[i][j] | |
return c | |
def multiply_strassen(a, b): | |
# Implements Strassen's algorithm for matrices a and b. | |
c = [[[] for _ in xrange(len(a))] for _ in xrange(len(b[0]))] | |
q = len(a) | |
if q == 2: | |
m_1 = (a[0][0] + a[1][1]) * (b[0][0] + b[1][1]) | |
m_2 = (a[1][0] + a[1][1]) * b[0][0] | |
m_3 = a[0][0] * (b[0][1] - b[1][1]) | |
m_4 = a[1][1] * (b[1][0] - b[0][0]) | |
m_5 = (a[0][0] + a[0][1]) * b[1][1] | |
m_6 = (a[1][0] - a[0][0]) * (b[0][0] + b[0][1]) | |
m_7 = (a[0][1] - a[1][1]) * (b[1][0] + b[1][1]) | |
c[0][0] = m_1 + m_4 - m_5 + m_7 | |
c[0][1] = m_3 + m_5 | |
c[1][0] = m_2 + m_4 | |
c[1][1] = m_1 - m_2 + m_3 + m_6 | |
return c | |
else: | |
p = q / 2 | |
zero_slice = (0, p) | |
one_slice = (p, q) | |
m_1 = multiply_strassen(mat_add(slicer(a, zero_slice, zero_slice), | |
slicer(a, one_slice, one_slice)), | |
mat_add(slicer(b, zero_slice, zero_slice), | |
slicer(b, one_slice, one_slice))) | |
m_2 = multiply_strassen(mat_add(slicer(a, one_slice, zero_slice), | |
slicer(a, one_slice, one_slice)), | |
slicer(b, zero_slice, zero_slice)) | |
m_3 = multiply_strassen(slicer(a, zero_slice, zero_slice), | |
mat_sub(slicer(b, zero_slice, one_slice), | |
slicer(b, one_slice, one_slice))) | |
m_4 = multiply_strassen(slicer(a, one_slice, one_slice), | |
mat_sub(slicer(b, one_slice, zero_slice), | |
slicer(b, zero_slice, zero_slice))) | |
m_5 = multiply_strassen(mat_add(slicer(a, zero_slice, zero_slice), | |
slicer(a, zero_slice, one_slice)), | |
slicer(b, one_slice, one_slice)) | |
m_6 = multiply_strassen(mat_sub(slicer(a, one_slice, zero_slice), | |
slicer(a, zero_slice, zero_slice)), | |
mat_add(slicer(b, zero_slice, zero_slice), | |
slicer(b, zero_slice, one_slice))) | |
m_7 = multiply_strassen(mat_sub(slicer(a, zero_slice, one_slice), | |
slicer(a, one_slice, one_slice)), | |
mat_add(slicer(b, one_slice, zero_slice), | |
slicer(b, one_slice, one_slice))) | |
# Collect the four quadrants of C | |
c_up_lf = mat_add(mat_sub(mat_add(m_1, m_4), m_5), m_7) | |
c_up_rt = mat_add(m_3, m_5) | |
c_dn_lf = mat_add(m_2, m_4) | |
c_dn_rt = mat_add(mat_add(mat_sub(m_1, m_2), m_3), m_6) | |
# Populate the C matrix | |
for i in xrange(p): | |
for j in xrange(p): | |
c[i][j] = c_up_lf[i][j] | |
c[i][p + j] = c_up_rt[i][j] | |
c[p + i][j] = c_dn_lf[i][j] | |
c[p + i][p + j] = c_dn_rt[i][j] | |
return c | |
def multiply_classical(a, b): | |
# Implements the classical algorithm for multiplying matrices and b. | |
c = [[[] for _ in xrange(len(a))] for _ in xrange(len(b[0]))] | |
for i in xrange(len(c)): | |
for j in xrange(len(c[0])): | |
c[i][j] = dot_product(a[i], col_select(b, j)) | |
return c | |
print "Strassen result:" | |
c_s = multiply_strassen(mat_a, mat_b) | |
for row in c_s: | |
print " ".join(map(str, row)) | |
print "Classical result:" | |
c_c = multiply_classical(mat_a, mat_b) | |
for row in c_c: | |
print " ".join(map(str, row)) | |
print "Difference matrix:" | |
e = mat_sub(c_s, c_c) | |
for row in e: | |
print " ".join(map(str, row)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import math | |
import random | |
"Pass the matrix size n to input_generator.py as a command line argument" | |
n = int(sys.argv[1]) | |
assert n == 2 ** math.log(n, 2), "Argument passed must be a power of 2" | |
mat_a = [[str(random.uniform(-10, 10)) for _ in xrange(n)] for _ in xrange(n)] | |
mat_b = [[str(random.uniform(-10, 10)) for _ in xrange(n)] for _ in xrange(n)] | |
with open("input.txt", "w") as matrix_info: | |
matrix_info.write(str(n) + "\n") | |
for row in mat_a: | |
matrix_info.write(" ".join(row) + "\n") | |
for row in mat_b: | |
matrix_info.write(" ".join(row) + "\n") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment