Created
May 22, 2014 20:30
-
-
Save vsbuffalo/de4656058337e95683e2 to your computer and use it in GitHub Desktop.
Visualize your mentions over time
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(lubridate) | |
library(dplyr) | |
library(reshape2) | |
myname <- "@vsbuffalo" # for removing later | |
d <- read.csv("tweets.csv", header=TRUE, stringsAsFactors=FALSE) | |
extractMentions <- function(x) { | |
gsub("[^@]*(@[a-zA-Z0-9_]+).*", "\\1", x, perl=TRUE) | |
} | |
getMentions <- function(x) { | |
words <- strsplit(x, " +") | |
mentions <- lapply(words, function(w) { | |
extractMentions(w[grep("@", w)]) | |
}) | |
all_users <- sort(unique(unlist(mentions))) | |
mentions <- lapply(mentions, function(m) factor(m, levels=all_users)) | |
tmp <- do.call(rbind, lapply(mentions, table)) | |
tmp | |
} | |
monyr <- function(x) { | |
x <- as.POSIXlt(x) | |
x$mday <- 1 | |
as.Date(x) | |
} | |
mentions <- getMentions(d$text) | |
csums_mentions <- colSums(mentions) | |
# tweek how many folks you see here: | |
# mentions_subset <- mentions[, csums_mentions > quantile(csums_mentions, probs=0.98)] | |
mentions_subset <- mentions[, csums_mentions > 50] | |
times <- parse_date_time(d$timestamp, "ymd_hms z*!") | |
dm <- data.frame(time=times, year=year(times), month=month(times)) | |
dm <- cbind(dm, mentions_subset) | |
dmelt <- melt(dm, id.vars=c('time', 'year', 'month')) | |
xx <- dmelt %.% group_by(monyr=monyr(time), variable) %.% summarise(ntweets = sum(value)) | |
p <- ggplot(xx[xx$variable != myname,]) | |
p <- p + geom_line(aes(x=monyr, group=variable, color=variable, y=ntweets)) | |
p <- p + xlab("") + ylab("tweets per month") + scale_color_discrete("mentions") | |
p |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment