Skip to content

Instantly share code, notes, and snippets.

@vsuthichai
Last active March 8, 2019 19:07
Show Gist options
  • Save vsuthichai/0d1524f03ed726bf1e6eb627062de5bc to your computer and use it in GitHub Desktop.
Save vsuthichai/0d1524f03ed726bf1e6eb627062de5bc to your computer and use it in GitHub Desktop.
+ VENV=tensorflow_p36_13rc1
+ git branch
+ grep '*'
+ awk '{print $2}'
+ git log
+ head -1
++ basename ./no_batch_train_1node_16xl_convergence.sh
+ cp no_batch_train_1node_16xl_convergence.sh /home/ubuntu/logs/train_log_20190308_185758
+ env
+ pip freeze
You are using pip version 19.0.2, however version 19.0.3 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
+ ldd /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/libtensorflow_framework.so
+ HOROVOD_TIMELINE=/home/ubuntu/logs/train_log_20190308_185758/htimeline.json
+ HOROVOD_CYCLE_TIME=0.5
+ HOROVOD_FUSION_THRESHOLD=67108864
+ /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/bin/mpirun -np 8 -H localhost:8 -wdir /home/ubuntu/tensorpack-mask-rcnn --mca plm_rsh_no_tree_spawn 1 -bind-to none -map-by slot -mca pml ob1 -mca btl '^openib' -mca btl_tcp_if_exclude lo,docker0 -mca btl_vader_single_copy_mechanism none -x 'NCCL_SOCKET_IFNAME=^docker0,lo' -x NCCL_MIN_NRINGS=8 -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -x HOROVOD_CYCLE_TIME -x HOROVOD_FUSION_THRESHOLD --output-filename /home/ubuntu/logs/train_log_20190308_185758/mpirun_logs /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/bin/python3 -m MaskRCNN.train --logdir /home/ubuntu/logs/train_log_20190308_185758 --fp16 --perf --images_per_step 16 --throughput_log_freq 2000 --summary_period 0 --config MODE_MASK=True MODE_FPN=True DATA.BASEDIR=/home/ubuntu/data 'DATA.TRAIN=["train2017"]' 'DATA.VAL=("val2017",)' TRAIN.STEPS_PER_EPOCH=15000 'TRAIN.LR_SCHEDULE=[120000, 160000, 180000]' BACKBONE.WEIGHTS=/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz BACKBONE.NORM=FreezeBN TRAIN.BATCH_SIZE_PER_GPU=2 TRAINER=horovod
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
Limited tf.compat.v2.summary API due to missing TensorBoard installation
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
Imported ujson
Imported ujson
Imported ujson
Imported ujson
Imported ujson
Imported ujson
Imported ujson
Imported ujson
[0308 18:58:01 @train.py:550] Horovod Rank=2, Size=8
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @train.py:550] Horovod Rank=0, Size=8
[0308 18:58:01 @train.py:550] Horovod Rank=6, Size=8
[0308 18:58:01 @train.py:550] Horovod Rank=5, Size=8
[0308 18:58:01 @train.py:550] Horovod Rank=1, Size=8
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @train.py:550] Horovod Rank=3, Size=8
[0308 18:58:01 @train.py:550] Horovod Rank=7, Size=8
[0308 18:58:01 @train.py:550] Horovod Rank=4, Size=8
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @logger.py:87] Argv: /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py --logdir /home/ubuntu/logs/train_log_20190308_185758 --fp16 --perf --images_per_step 16 --throughput_log_freq 2000 --summary_period 0 --config MODE_MASK=True MODE_FPN=True DATA.BASEDIR=/home/ubuntu/data DATA.TRAIN=["train2017"] DATA.VAL=("val2017",) TRAIN.STEPS_PER_EPOCH=15000 TRAIN.LR_SCHEDULE=[120000, 160000, 180000] BACKBONE.WEIGHTS=/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz BACKBONE.NORM=FreezeBN TRAIN.BATCH_SIZE_PER_GPU=2 TRAINER=horovod
[0308 18:58:01 @config.py:247] WRN It's not recommended to use horovod for single-machine training. Replicated trainer is more stable and has the same efficiency.
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
Batch size per GPU: 2
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
Batch size per GPU: 2
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
Batch size per GPU: 2
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
Batch size per GPU: 2
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
loading annotations into memory...
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
Batch size per GPU: 2
Batch size per GPU: 2
Batch size per GPU: 2
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
loading annotations into memory...
loading annotations into memory...
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
loading annotations into memory...
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
[0308 18:58:01 @config.py:268] Config: ------------------------------------------
{'BACKBONE': {'FREEZE_AFFINE': False,
'FREEZE_AT': 2,
'NORM': 'FreezeBN',
'RESNET_NUM_BLOCKS': [3, 4, 6, 3],
'STRIDE_1X1': False,
'TF_PAD_MODE': False,
'WEIGHTS': '/home/ubuntu/data/pretrained-models/ImageNet-R50-AlignPadding.npz'},
'DATA': {'BASEDIR': '/home/ubuntu/data',
'CLASS_NAMES': ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'],
'NUM_CATEGORY': 80,
'NUM_CLASS': 81,
'TRAIN': ['train2017'],
'VAL': ('val2017',)},
'FPN': {'ANCHOR_STRIDES': (4, 8, 16, 32, 64),
'FRCNN_CONV_HEAD_DIM': 256,
'FRCNN_FC_HEAD_DIM': 1024,
'FRCNN_HEAD_FUNC': 'fastrcnn_2fc_head',
'MRCNN_HEAD_FUNC': 'maskrcnn_up4conv_head',
'NORM': 'None',
'NUM_CHANNEL': 256,
'PROPOSAL_MODE': 'Level',
'RESOLUTION_REQUIREMENT': 32},
'FRCNN': {'BATCH_PER_IM': 512,
'BBOX_REG_WEIGHTS': [10.0, 10.0, 5.0, 5.0],
'FG_RATIO': 0.25,
'FG_THRESH': 0.5},
'MODE_FPN': True,
'MODE_MASK': True,
'MRCNN': {'HEAD_DIM': 256},
'PREPROC': {'MAX_SIZE': 1344.0,
'PIXEL_MEAN': [123.675, 116.28, 103.53],
'PIXEL_STD': [58.395, 57.12, 57.375],
'TEST_SHORT_EDGE_SIZE': 800,
'TRAIN_SHORT_EDGE_SIZE': [800, 800]},
'RPN': {'ANCHOR_RATIOS': (0.5, 1.0, 2.0),
'ANCHOR_SIZES': (32, 64, 128, 256, 512),
'ANCHOR_STRIDE': 16,
'BATCH_PER_IM': 256,
'CROWD_OVERLAP_THRESH': 9.99,
'FG_RATIO': 0.5,
'HEAD_DIM': 1024,
'MIN_SIZE': 0.1,
'NEGATIVE_ANCHOR_THRESH': 0.3,
'NUM_ANCHOR': 15,
'POSITIVE_ANCHOR_THRESH': 0.7,
'PROPOSAL_NMS_THRESH': 0.7,
'TEST_PER_LEVEL_NMS_TOPK': 1000,
'TEST_POST_NMS_TOPK': 1000,
'TEST_PRE_NMS_TOPK': 6000,
'TRAIN_PER_LEVEL_NMS_TOPK': 2000,
'TRAIN_POST_NMS_TOPK': 2000,
'TRAIN_PRE_NMS_TOPK': 12000},
'TEST': {'FRCNN_NMS_THRESH': 0.5,
'RESULTS_PER_IM': 100,
'RESULT_SCORE_THRESH': 0.05,
'RESULT_SCORE_THRESH_VIS': 0.3},
'TRAIN': {'BASE_LR': 0.01,
'BATCH_SIZE_PER_GPU': 2,
'EVAL_PERIOD': 25,
'LR_SCHEDULE': [120000, 160000, 180000],
'NUM_GPUS': 8,
'STARTING_EPOCH': 1,
'STEPS_PER_EPOCH': 15000,
'WARMUP': 1000,
'WARMUP_INIT_LR': 0.0033000000000000004,
'WEIGHT_DECAY': 0.0001},
'TRAINER': 'horovod'}
Batch size per GPU: 2
[0308 18:58:01 @train.py:571] Warm Up Schedule (steps, value): [(0, 0.0033000000000000004), (1000, 0.01)]
[0308 18:58:01 @train.py:572] LR Schedule (epochs, value): [(0, 0.01), (8.0, 0.001), (10.0, 0.00010000000000000002)]
In train dataflow
loading annotations into memory...
loading annotations into memory...
loading annotations into memory...
loading annotations into memory...
Done (t=13.34s)
creating index...
Done (t=13.60s)
creating index...
Done (t=13.64s)
creating index...
Done (t=13.72s)
creating index...
Done (t=13.78s)
creating index...
index created!
[0308 18:58:15 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
0%| | 0/118287 [00:00<?, ?it/s]
0%| | 483/118287 [00:00<00:24, 4809.98it/s]
1%| | 902/118287 [00:00<00:25, 4604.98it/s]index created!
[0308 18:58:16 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
Done (t=14.41s)
creating index...
index created!
[0308 18:58:16 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
1%| | 1370/118287 [00:00<00:25, 4618.86it/s]
0%| | 0/118287 [00:00<?, ?it/s]index created!
[0308 18:58:16 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
0%| | 0/118287 [00:00<?, ?it/s]index created!
[0308 18:58:16 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
Done (t=14.53s)
creating index...
2%|▏ | 1838/118287 [00:00<00:25, 4636.55it/s]
0%| | 471/118287 [00:00<00:25, 4708.25it/s]
0%| | 0/118287 [00:00<?, ?it/s]
0%| | 0/118287 [00:00<?, ?it/s]
0%| | 464/118287 [00:00<00:25, 4634.07it/s]
2%|▏ | 2305/118287 [00:00<00:25, 4636.69it/s]
1%| | 879/118287 [00:00<00:26, 4497.05it/s]
0%| | 480/118287 [00:00<00:24, 4797.65it/s]
0%| | 486/118287 [00:00<00:24, 4854.97it/s]
1%| | 877/118287 [00:00<00:26, 4467.34it/s]
2%|▏ | 2798/118287 [00:00<00:24, 4716.95it/s]
1%| | 1354/118287 [00:00<00:25, 4568.42it/s]
1%| | 894/118287 [00:00<00:25, 4577.96it/s]
1%| | 905/118287 [00:00<00:25, 4627.62it/s]
1%| | 1344/118287 [00:00<00:25, 4526.02it/s]
3%|▎ | 3274/118287 [00:00<00:24, 4729.37it/s]
2%|▏ | 1831/118287 [00:00<00:25, 4620.58it/s]
1%| | 1372/118287 [00:00<00:25, 4634.07it/s]
1%| | 1370/118287 [00:00<00:25, 4622.80it/s]
2%|▏ | 1814/118287 [00:00<00:25, 4576.50it/s]
3%|▎ | 3717/118287 [00:00<00:24, 4631.59it/s]
2%|▏ | 2290/118287 [00:00<00:25, 4608.67it/s]
2%|▏ | 1848/118287 [00:00<00:24, 4671.01it/s]
2%|▏ | 1838/118287 [00:00<00:25, 4639.18it/s]
2%|▏ | 2279/118287 [00:00<00:25, 4597.67it/s]
4%|▎ | 4175/118287 [00:00<00:24, 4613.81it/s]
2%|▏ | 2786/118287 [00:00<00:24, 4708.21it/s]
2%|▏ | 2324/118287 [00:00<00:24, 4696.54it/s]
2%|▏ | 2305/118287 [00:00<00:24, 4643.19it/s]
2%|▏ | 2766/118287 [00:00<00:24, 4675.36it/s]
4%|▍ | 4618/118287 [00:01<00:25, 4499.36it/s]
3%|▎ | 3261/118287 [00:00<00:24, 4720.12it/s]
2%|▏ | 2824/118287 [00:00<00:24, 4782.10it/s]index created!
[0308 18:58:17 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
2%|▏ | 2789/118287 [00:00<00:24, 4698.61it/s]
3%|▎ | 3241/118287 [00:00<00:24, 4697.48it/s]
0%| | 0/118287 [00:00<?, ?it/s]
4%|▍ | 5093/118287 [00:01<00:24, 4569.52it/s]index created!
[0308 18:58:17 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
3%|▎ | 3696/118287 [00:00<00:25, 4566.33it/s]
3%|▎ | 3302/118287 [00:00<00:24, 4781.17it/s]
3%|▎ | 3264/118287 [00:00<00:24, 4709.56it/s]
3%|▎ | 3689/118287 [00:00<00:24, 4628.73it/s]
0%| | 0/118287 [00:00<?, ?it/s]
0%| | 403/118287 [00:00<00:29, 4026.07it/s]
5%|▍ | 5581/118287 [00:01<00:24, 4658.33it/s]
4%|▎ | 4153/118287 [00:00<00:24, 4567.25it/s]
3%|▎ | 3754/118287 [00:00<00:24, 4698.82it/s]
3%|▎ | 3705/118287 [00:00<00:24, 4614.69it/s]
4%|▎ | 4156/118287 [00:00<00:24, 4638.77it/s]
0%| | 433/118287 [00:00<00:27, 4329.75it/s]
1%| | 760/118287 [00:00<00:30, 3876.02it/s]
5%|▌ | 6111/118287 [00:01<00:23, 4833.10it/s]
4%|▎ | 4226/118287 [00:00<00:24, 4699.79it/s]
4%|▍ | 4592/118287 [00:01<00:25, 4421.30it/s]
4%|▎ | 4172/118287 [00:00<00:24, 4617.99it/s]
4%|▍ | 4602/118287 [00:01<00:25, 4454.00it/s]
1%| | 816/118287 [00:00<00:28, 4164.08it/s]
1%| | 1129/118287 [00:00<00:30, 3815.82it/s]
6%|▌ | 6627/118287 [00:01<00:22, 4924.21it/s]
4%|▍ | 4678/118287 [00:01<00:24, 4602.66it/s]
4%|▍ | 5053/118287 [00:01<00:25, 4474.17it/s]
4%|▍ | 4615/118287 [00:01<00:25, 4478.98it/s]
4%|▍ | 5073/118287 [00:01<00:25, 4525.70it/s]
1%|▏ | 1534/118287 [00:00<00:30, 3883.04it/s]
1%| | 1228/118287 [00:00<00:28, 4144.14it/s]
6%|▌ | 7119/118287 [00:01<00:22, 4868.68it/s]
4%|▍ | 5134/118287 [00:01<00:24, 4587.85it/s]
5%|▍ | 5541/118287 [00:01<00:24, 4588.24it/s]
4%|▍ | 5094/118287 [00:01<00:24, 4567.23it/s]
5%|▍ | 5529/118287 [00:01<00:24, 4526.25it/s]
2%|▏ | 1932/118287 [00:00<00:29, 3909.97it/s]
1%|▏ | 1682/118287 [00:00<00:27, 4251.77it/s]
6%|▋ | 7606/118287 [00:01<00:23, 4803.04it/s]
5%|▍ | 5624/118287 [00:01<00:24, 4675.31it/s]
5%|▌ | 6041/118287 [00:01<00:23, 4703.37it/s]
5%|▍ | 5581/118287 [00:01<00:24, 4649.92it/s]
5%|▌ | 5983/118287 [00:01<00:24, 4528.50it/s]
2%|▏ | 2332/118287 [00:00<00:29, 3935.98it/s]
2%|▏ | 2106/118287 [00:00<00:27, 4246.72it/s]
7%|▋ | 8087/118287 [00:01<00:23, 4618.36it/s]
5%|▌ | 6141/118287 [00:01<00:23, 4812.06it/s]
6%|▌ | 6553/118287 [00:01<00:23, 4818.97it/s]
5%|▌ | 6111/118287 [00:01<00:23, 4827.31it/s]
5%|▌ | 6456/118287 [00:01<00:24, 4586.58it/s]
2%|▏ | 2743/118287 [00:00<00:28, 3984.36it/s]
2%|▏ | 2555/118287 [00:00<00:26, 4311.52it/s]
6%|▌ | 6656/118287 [00:01<00:22, 4908.29it/s]
6%|▌ | 7034/118287 [00:01<00:23, 4795.44it/s]
7%|▋ | 8551/118287 [00:01<00:25, 4374.01it/s]
6%|▌ | 6628/118287 [00:01<00:22, 4921.60it/s]
6%|▌ | 6913/118287 [00:01<00:24, 4579.50it/s]
3%|▎ | 3161/118287 [00:00<00:28, 4039.29it/s]
3%|▎ | 3023/118287 [00:00<00:26, 4413.82it/s]
6%|▌ | 7146/118287 [00:01<00:23, 4818.83it/s]
6%|▋ | 7513/118287 [00:01<00:23, 4712.21it/s]
8%|▊ | 8993/118287 [00:01<00:25, 4273.67it/s]
6%|▌ | 7120/118287 [00:01<00:22, 4885.47it/s]
6%|▌ | 7370/118287 [00:01<00:24, 4444.02it/s]
3%|▎ | 3465/118287 [00:00<00:26, 4412.00it/s]
3%|▎ | 3543/118287 [00:00<00:29, 3901.38it/s]
6%|▋ | 7628/118287 [00:01<00:23, 4784.90it/s]
7%|▋ | 7985/118287 [00:01<00:23, 4653.63it/s]
8%|▊ | 9424/118287 [00:02<00:25, 4242.18it/s]
6%|▋ | 7608/118287 [00:01<00:23, 4809.49it/s]
7%|▋ | 7815/118287 [00:01<00:25, 4386.51it/s]
3%|▎ | 3884/118287 [00:00<00:26, 4339.64it/s]
3%|▎ | 3920/118287 [00:01<00:29, 3859.33it/s]
7%|▋ | 8106/118287 [00:01<00:23, 4678.78it/s]
7%|▋ | 8451/118287 [00:01<00:24, 4538.13it/s]
8%|▊ | 9852/118287 [00:02<00:25, 4248.29it/s]
7%|▋ | 8089/118287 [00:01<00:23, 4698.54it/s]
7%|▋ | 8254/118287 [00:01<00:25, 4293.84it/s]
4%|▎ | 4302/118287 [00:01<00:26, 4251.29it/s]
4%|▎ | 4297/118287 [00:01<00:29, 3828.69it/s]
7%|▋ | 8575/118287 [00:01<00:23, 4619.82it/s]
8%|▊ | 8906/118287 [00:01<00:24, 4506.42it/s]
9%|▊ | 10279/118287 [00:02<00:26, 4118.04it/s]
7%|▋ | 8560/118287 [00:01<00:23, 4633.06it/s]
7%|▋ | 8684/118287 [00:01<00:25, 4217.79it/s]
4%|▍ | 4718/118287 [00:01<00:26, 4219.11it/s]
4%|▍ | 4673/118287 [00:01<00:29, 3789.28it/s]
8%|▊ | 9038/118287 [00:01<00:23, 4599.17it/s]
8%|▊ | 9389/118287 [00:02<00:23, 4598.69it/s]
9%|▉ | 10693/118287 [00:02<00:26, 4065.67it/s]
8%|▊ | 9026/118287 [00:01<00:23, 4639.00it/s]
8%|▊ | 9107/118287 [00:02<00:26, 4149.97it/s]
4%|▍ | 5140/118287 [00:01<00:26, 4218.79it/s]
4%|▍ | 5072/118287 [00:01<00:29, 3846.75it/s]
8%|▊ | 9547/118287 [00:02<00:22, 4734.99it/s]
8%|▊ | 9874/118287 [00:02<00:23, 4671.16it/s]
8%|▊ | 9536/118287 [00:02<00:22, 4767.84it/s]
9%|▉ | 11102/118287 [00:02<00:26, 3987.89it/s]
8%|▊ | 9573/118287 [00:02<00:25, 4288.36it/s]
5%|▍ | 5558/118287 [00:01<00:26, 4201.65it/s]
5%|▍ | 5488/118287 [00:01<00:28, 3935.07it/s]
8%|▊ | 10022/118287 [00:02<00:23, 4691.42it/s]
9%|▊ | 10342/118287 [00:02<00:23, 4557.63it/s]
8%|▊ | 10014/118287 [00:02<00:22, 4724.17it/s]
10%|▉ | 11503/118287 [00:02<00:27, 3932.88it/s]
8%|▊ | 10004/118287 [00:02<00:25, 4179.96it/s]
5%|▌ | 5991/118287 [00:01<00:26, 4239.28it/s]
5%|▍ | 5900/118287 [00:01<00:28, 3979.66it/s]
9%|▉ | 10493/118287 [00:02<00:23, 4652.48it/s]
9%|▉ | 10799/118287 [00:02<00:23, 4528.60it/s]
10%|█ | 11919/118287 [00:02<00:26, 3994.45it/s]
9%|▉ | 10488/118287 [00:02<00:23, 4628.23it/s]
5%|▌ | 6442/118287 [00:01<00:25, 4314.29it/s]
9%|▉ | 10424/118287 [00:02<00:26, 4128.57it/s]
5%|▌ | 6356/118287 [00:01<00:27, 4135.74it/s]
9%|▉ | 10959/118287 [00:02<00:23, 4626.24it/s]
10%|▉ | 11253/118287 [00:02<00:24, 4445.52it/s]
10%|█ | 12345/118287 [00:02<00:26, 4067.00it/s]
9%|▉ | 10952/118287 [00:02<00:23, 4570.80it/s]
6%|▌ | 6872/118287 [00:01<00:26, 4261.65it/s]
6%|▌ | 6771/118287 [00:01<00:27, 4128.87it/s]
9%|▉ | 10839/118287 [00:02<00:26, 4066.88it/s]
10%|▉ | 11423/118287 [00:02<00:23, 4543.24it/s]
10%|▉ | 11705/118287 [00:02<00:23, 4466.89it/s]
11%|█ | 12753/118287 [00:02<00:25, 4063.12it/s]
10%|▉ | 11410/118287 [00:02<00:24, 4450.56it/s]
6%|▌ | 7185/118287 [00:01<00:27, 4064.24it/s]
6%|▌ | 7298/118287 [00:01<00:26, 4135.29it/s]
10%|▉ | 11247/118287 [00:02<00:26, 3982.40it/s]
10%|█ | 11879/118287 [00:02<00:23, 4524.08it/s]
10%|█ | 12170/118287 [00:02<00:23, 4519.76it/s]
11%|█ | 13161/118287 [00:02<00:26, 4017.95it/s]
10%|█ | 11863/118287 [00:02<00:23, 4473.77it/s]
6%|▋ | 7593/118287 [00:01<00:27, 4025.35it/s]
10%|▉ | 11647/118287 [00:02<00:26, 3975.63it/s]
7%|▋ | 7712/118287 [00:01<00:27, 4026.08it/s]
10%|█ | 12368/118287 [00:02<00:22, 4626.33it/s]
11%|█ | 12631/118287 [00:02<00:23, 4544.89it/s]
11%|█▏ | 13574/118287 [00:03<00:25, 4045.20it/s]
10%|█ | 12338/118287 [00:02<00:23, 4551.77it/s]
10%|█ | 12064/118287 [00:02<00:26, 4026.68it/s]
7%|▋ | 7997/118287 [00:02<00:27, 3944.44it/s]
7%|▋ | 8116/118287 [00:01<00:28, 3891.71it/s]
11%|█ | 12832/118287 [00:02<00:23, 4579.07it/s]
11%|█ | 13086/118287 [00:02<00:23, 4501.59it/s]
12%|█▏ | 13984/118287 [00:03<00:25, 4060.31it/s]
11%|█ | 12795/118287 [00:02<00:23, 4555.48it/s]
11%|█ | 12489/118287 [00:02<00:25, 4090.47it/s]
7%|▋ | 8393/118287 [00:02<00:28, 3842.28it/s]
7%|▋ | 8507/118287 [00:02<00:28, 3829.92it/s]
11%|█ | 13303/118287 [00:02<00:22, 4614.69it/s]
11%|█▏ | 13547/118287 [00:02<00:23, 4532.58it/s]
12%|█▏ | 14449/118287 [00:03<00:24, 4218.83it/s]
11%|█ | 13252/118287 [00:02<00:23, 4536.05it/s]
11%|█ | 12899/118287 [00:02<00:26, 3972.85it/s]
7%|▋ | 8779/118287 [00:02<00:29, 3775.81it/s]
8%|▊ | 8892/118287 [00:02<00:28, 3814.05it/s]
12%|█▏ | 13769/118287 [00:02<00:22, 4626.59it/s]
12%|█▏ | 14031/118287 [00:03<00:22, 4614.19it/s]
13%|█▎ | 14873/118287 [00:03<00:24, 4187.50it/s]
12%|█▏ | 13724/118287 [00:02<00:22, 4586.83it/s]
11%|█▏ | 13312/118287 [00:03<00:26, 4015.17it/s]
8%|▊ | 9162/118287 [00:02<00:28, 3791.21it/s]
8%|▊ | 9283/118287 [00:02<00:28, 3839.12it/s]
12%|█▏ | 14253/118287 [00:03<00:22, 4688.03it/s]
12%|█▏ | 14494/118287 [00:03<00:22, 4603.29it/s]
13%|█▎ | 15294/118287 [00:03<00:25, 4102.81it/s]
12%|█▏ | 14189/118287 [00:03<00:22, 4604.03it/s]
12%|█▏ | 13727/118287 [00:03<00:25, 4051.12it/s]
8%|▊ | 9596/118287 [00:02<00:27, 3939.40it/s]
8%|▊ | 9721/118287 [00:02<00:27, 3986.71it/s]
12%|█▏ | 14723/118287 [00:03<00:22, 4679.82it/s]
13%|█▎ | 14955/118287 [00:03<00:23, 4489.17it/s]
13%|█▎ | 15742/118287 [00:03<00:24, 4204.32it/s]
12%|█▏ | 14670/118287 [00:03<00:22, 4663.80it/s]
12%|█▏ | 14134/118287 [00:03<00:25, 4055.47it/s]
8%|▊ | 9992/118287 [00:02<00:27, 3894.33it/s]
9%|▊ | 10122/118287 [00:02<00:27, 3888.36it/s]
13%|█▎ | 15192/118287 [00:03<00:22, 4519.08it/s]
13%|█▎ | 15405/118287 [00:03<00:23, 4401.65it/s]
14%|█▎ | 16167/118287 [00:03<00:24, 4216.29it/s]
13%|█▎ | 15137/118287 [00:03<00:23, 4483.24it/s]
12%|█▏ | 14556/118287 [00:03<00:25, 4099.08it/s]
9%|▉ | 10383/118287 [00:02<00:27, 3866.09it/s]
9%|▉ | 10513/118287 [00:02<00:27, 3874.80it/s]
13%|█▎ | 15679/118287 [00:03<00:22, 4617.89it/s]
13%|█▎ | 15851/118287 [00:03<00:23, 4415.22it/s]
14%|█▍ | 16606/118287 [00:03<00:23, 4264.48it/s]
13%|█▎ | 15589/118287 [00:03<00:22, 4490.73it/s]
13%|█▎ | 14967/118287 [00:03<00:26, 3928.59it/s]
9%|▉ | 10771/118287 [00:02<00:28, 3833.96it/s]
9%|▉ | 10902/118287 [00:02<00:27, 3845.07it/s]
14%|█▎ | 16143/118287 [00:03<00:22, 4576.54it/s]
14%|█▍ | 16324/118287 [00:03<00:22, 4504.04it/s]
14%|█▍ | 17034/118287 [00:03<00:23, 4249.38it/s]
14%|█▎ | 16052/118287 [00:03<00:22, 4529.72it/s]Done (t=18.11s)
creating index...
13%|█▎ | 15362/118287 [00:03<00:26, 3886.78it/s]
9%|▉ | 11156/118287 [00:02<00:28, 3743.36it/s]
10%|▉ | 11288/118287 [00:02<00:28, 3764.44it/s]
14%|█▍ | 16628/118287 [00:03<00:21, 4650.87it/s]
14%|█▍ | 16776/118287 [00:03<00:22, 4478.96it/s]
15%|█▍ | 17460/118287 [00:04<00:24, 4106.79it/s]
14%|█▍ | 16532/118287 [00:03<00:22, 4599.95it/s]
13%|█▎ | 15771/118287 [00:03<00:26, 3940.52it/s]
10%|▉ | 11532/118287 [00:02<00:28, 3737.58it/s]
10%|▉ | 11673/118287 [00:02<00:28, 3788.07it/s]
14%|█▍ | 17099/118287 [00:03<00:21, 4667.75it/s]
15%|█▍ | 17225/118287 [00:03<00:22, 4481.36it/s]
14%|█▍ | 16993/118287 [00:03<00:22, 4597.97it/s]
15%|█▌ | 17873/118287 [00:04<00:24, 4057.15it/s]
14%|█▎ | 16187/118287 [00:03<00:25, 3998.99it/s]
10%|█ | 11927/118287 [00:03<00:28, 3797.52it/s]
10%|█ | 12066/118287 [00:02<00:27, 3824.85it/s]
15%|█▍ | 17567/118287 [00:03<00:21, 4647.76it/s]
15%|█▍ | 17674/118287 [00:03<00:22, 4442.64it/s]
15%|█▍ | 17454/118287 [00:03<00:21, 4585.27it/s]
15%|█▌ | 18288/118287 [00:04<00:24, 4083.30it/s]
14%|█▍ | 16607/118287 [00:03<00:25, 4055.59it/s]
10%|█ | 12312/118287 [00:03<00:27, 3812.62it/s]
11%|█ | 12477/118287 [00:03<00:27, 3901.34it/s]
15%|█▌ | 18033/118287 [00:03<00:21, 4631.18it/s]
15%|█▌ | 18133/118287 [00:03<00:22, 4484.06it/s]
15%|█▌ | 17913/118287 [00:03<00:21, 4572.68it/s]
16%|█▌ | 18698/118287 [00:04<00:24, 4069.03it/s]
14%|█▍ | 17034/118287 [00:04<00:24, 4116.03it/s]
11%|█ | 12694/118287 [00:03<00:27, 3779.17it/s]
11%|█ | 12868/118287 [00:03<00:27, 3816.73it/s]
16%|█▌ | 18499/118287 [00:03<00:21, 4635.08it/s]
16%|█▌ | 18595/118287 [00:04<00:22, 4518.98it/s]
16%|█▌ | 18378/118287 [00:03<00:21, 4595.27it/s]
16%|█▌ | 19106/118287 [00:04<00:24, 4054.59it/s]
15%|█▍ | 17447/118287 [00:04<00:25, 4023.97it/s]
11%|█ | 13073/118287 [00:03<00:27, 3771.04it/s]
11%|█ | 13264/118287 [00:03<00:27, 3856.38it/s]
16%|█▌ | 18984/118287 [00:04<00:21, 4696.52it/s]
16%|█▌ | 19053/118287 [00:04<00:21, 4536.61it/s]
16%|█▌ | 18838/118287 [00:04<00:21, 4596.69it/s]
16%|█▋ | 19512/118287 [00:04<00:24, 4024.69it/s]
15%|█▌ | 17851/118287 [00:04<00:25, 4007.71it/s]
11%|█▏ | 13460/118287 [00:03<00:27, 3796.06it/s]
12%|█▏ | 13658/118287 [00:03<00:26, 3877.75it/s]
16%|█▋ | 19455/118287 [00:04<00:21, 4700.13it/s]
16%|█▋ | 19508/118287 [00:04<00:21, 4536.03it/s]
16%|█▋ | 19312/118287 [00:04<00:21, 4633.01it/s]
17%|█▋ | 19916/118287 [00:04<00:24, 4029.24it/s]
15%|█▌ | 18279/118287 [00:04<00:24, 4085.02it/s]
12%|█▏ | 13848/118287 [00:03<00:27, 3816.70it/s]
12%|█▏ | 14067/118287 [00:03<00:26, 3935.94it/s]
17%|█▋ | 19926/118287 [00:04<00:20, 4687.77it/s]
17%|█▋ | 19962/118287 [00:04<00:21, 4522.95it/s]
17%|█▋ | 19776/118287 [00:04<00:21, 4585.41it/s]
17%|█▋ | 20320/118287 [00:04<00:24, 4026.92it/s]
16%|█▌ | 18694/118287 [00:04<00:24, 4103.00it/s]
12%|█▏ | 14253/118287 [00:03<00:26, 3881.42it/s]
12%|█▏ | 14469/118287 [00:03<00:26, 3959.40it/s]
17%|█▋ | 20410/118287 [00:04<00:20, 4729.07it/s]
17%|█▋ | 20431/118287 [00:04<00:21, 4570.13it/s]
17%|█▋ | 20235/118287 [00:04<00:21, 4573.16it/s]
18%|█▊ | 20736/118287 [00:04<00:24, 4064.62it/s]
16%|█▌ | 19107/118287 [00:04<00:24, 4110.72it/s]
12%|█▏ | 14652/118287 [00:03<00:26, 3912.93it/s]
13%|█▎ | 14866/118287 [00:03<00:26, 3876.74it/s]
18%|█▊ | 20884/118287 [00:04<00:20, 4660.36it/s]
18%|█▊ | 20889/118287 [00:04<00:21, 4506.44it/s]
18%|█▊ | 20703/118287 [00:04<00:21, 4603.78it/s]
18%|█▊ | 21143/118287 [00:04<00:24, 3964.77it/s]
17%|█▋ | 19526/118287 [00:04<00:23, 4133.25it/s]
13%|█▎ | 15044/118287 [00:03<00:27, 3702.91it/s]
18%|█▊ | 21351/118287 [00:04<00:20, 4619.38it/s]
13%|█▎ | 15255/118287 [00:03<00:27, 3756.69it/s]
18%|█▊ | 21340/118287 [00:04<00:21, 4480.49it/s]index created!
[0308 18:58:21 @dataset.py:50] Instances loaded from /home/ubuntu/data/annotations/instances_train2017.json.
18%|█▊ | 21164/118287 [00:04<00:21, 4526.86it/s]
18%|█▊ | 21564/118287 [00:05<00:23, 4033.02it/s]
17%|█▋ | 19940/118287 [00:04<00:23, 4113.68it/s]
13%|█▎ | 15436/118287 [00:03<00:27, 3765.06it/s]
18%|█▊ | 21814/118287 [00:04<00:20, 4619.74it/s]
13%|█▎ | 15686/118287 [00:03<00:26, 3904.54it/s]
18%|█▊ | 21791/118287 [00:04<00:21, 4482.25it/s]
0%| | 0/118287 [00:00<?, ?it/s]
18%|█▊ | 21618/118287 [00:04<00:21, 4502.11it/s]
19%|█▊ | 21969/118287 [00:05<00:24, 3964.80it/s]
17%|█▋ | 20363/118287 [00:04<00:23, 4147.26it/s]
13%|█▎ | 15815/118287 [00:04<00:27, 3765.30it/s]
19%|█▉ | 22277/118287 [00:04<00:20, 4620.17it/s]
19%|█▉ | 22240/118287 [00:04<00:21, 4470.52it/s]
14%|█▎ | 16079/118287 [00:04<00:26, 3857.84it/s]
0%| | 378/118287 [00:00<00:31, 3777.42it/s]
19%|█▊ | 22069/118287 [00:04<00:21, 4468.37it/s]
19%|█▉ | 22367/118287 [00:05<00:24, 3942.21it/s]
18%|█▊ | 20778/118287 [00:04<00:23, 4129.74it/s]
14%|█▎ | 16219/118287 [00:04<00:26, 3837.78it/s]
19%|█▉ | 22753/118287 [00:04<00:20, 4660.60it/s]
19%|█▉ | 22710/118287 [00:04<00:21, 4535.71it/s]
14%|█▍ | 16492/118287 [00:04<00:25, 3934.56it/s]
1%| | 720/118287 [00:00<00:32, 3658.74it/s]
19%|█▉ | 22517/118287 [00:04<00:21, 4437.26it/s]
19%|█▉ | 22782/118287 [00:05<00:23, 4000.27it/s]
18%|█▊ | 21192/118287 [00:05<00:23, 4082.27it/s]
14%|█▍ | 16605/118287 [00:04<00:26, 3842.90it/s]
20%|█▉ | 23220/118287 [00:04<00:20, 4643.14it/s]
20%|█▉ | 23165/118287 [00:05<00:20, 4538.59it/s]
14%|█▍ | 16888/118287 [00:04<00:25, 3928.44it/s]
1%| | 1059/118287 [00:00<00:32, 3572.89it/s]
19%|█▉ | 22961/118287 [00:04<00:21, 4382.69it/s]
20%|█▉ | 23201/118287 [00:05<00:23, 4054.41it/s]
18%|█▊ | 21603/118287 [00:05<00:23, 4087.26it/s]
14%|█▍ | 16991/118287 [00:04<00:26, 3821.54it/s]
20%|█▉ | 23620/118287 [00:05<00:20, 4512.38it/s]
20%|██ | 23685/118287 [00:05<00:20, 4562.56it/s]
15%|█▍ | 17282/118287 [00:04<00:25, 3913.40it/s]
1%| | 1423/118287 [00:00<00:32, 3585.79it/s]
20%|█▉ | 23400/118287 [00:05<00:21, 4372.56it/s]
20%|█▉ | 23608/118287 [00:05<00:23, 4020.98it/s]
19%|█▊ | 22012/118287 [00:05<00:23, 4038.56it/s]
15%|█▍ | 17374/118287 [00:04<00:26, 3804.49it/s]
20%|██ | 24174/118287 [00:05<00:20, 4653.99it/s]
20%|██ | 24072/118287 [00:05<00:21, 4482.33it/s]
15%|█▍ | 17675/118287 [00:04<00:25, 3890.45it/s]
2%|▏ | 1820/118287 [00:00<00:31, 3691.58it/s]
20%|██ | 23838/118287 [00:05<00:21, 4324.14it/s]
20%|██ | 24011/118287 [00:05<00:23, 3985.67it/s]
19%|█▉ | 22425/118287 [00:05<00:23, 4052.75it/s]
15%|█▌ | 17755/118287 [00:04<00:26, 3760.62it/s]
21%|██ | 24684/118287 [00:05<00:19, 4777.64it/s]
21%|██ | 24566/118287 [00:05<00:20, 4608.89it/s]
15%|█▌ | 18089/118287 [00:04<00:25, 3961.38it/s]
2%|▏ | 2193/118287 [00:00<00:31, 3702.92it/s]
21%|██ | 24273/118287 [00:05<00:21, 4330.07it/s]
21%|██ | 24438/118287 [00:05<00:23, 4060.61it/s]
19%|█▉ | 22837/118287 [00:05<00:23, 4071.07it/s]
15%|█▌ | 18146/118287 [00:04<00:26, 3800.78it/s]
21%|██ | 25028/118287 [00:05<00:20, 4568.20it/s]
21%|██▏ | 25164/118287 [00:05<00:19, 4694.12it/s]
16%|█▌ | 18486/118287 [00:04<00:25, 3926.95it/s]
2%|▏ | 2583/118287 [00:00<00:30, 3758.77it/s]
21%|██ | 24719/118287 [00:05<00:21, 4367.83it/s]
21%|██ | 24858/118287 [00:05<00:22, 4099.47it/s]
20%|█▉ | 23258/118287 [00:05<00:23, 4111.77it/s]
16%|█▌ | 18531/118287 [00:04<00:26, 3813.37it/s]
22%|██▏ | 25488/118287 [00:05<00:20, 4576.84it/s]
16%|█▌ | 18880/118287 [00:04<00:25, 3922.56it/s]
3%|▎ | 2983/118287 [00:00<00:30, 3823.50it/s]
22%|██▏ | 25635/118287 [00:05<00:20, 4593.94it/s]
21%|██▏ | 25269/118287 [00:05<00:22, 4061.38it/s]
21%|██▏ | 25157/118287 [00:05<00:21, 4260.28it/s]
20%|██ | 23670/118287 [00:05<00:23, 4016.02it/s]
16%|█▌ | 18925/118287 [00:04<00:25, 3849.81it/s]
22%|██▏ | 25951/118287 [00:05<00:20, 4590.59it/s]
16%|█▋ | 19275/118287 [00:04<00:25, 3930.02it/s]
3%|▎ | 3345/118287 [00:00<00:30, 3753.14it/s]
22%|██▏ | 26137/118287 [00:05<00:19, 4711.18it/s]
22%|██▏ | 25679/118287 [00:06<00:22, 4069.89it/s]
22%|██▏ | 25584/118287 [00:05<00:21, 4259.94it/s]
20%|██ | 24086/118287 [00:05<00:23, 4057.61it/s]
16%|█▋ | 19320/118287 [00:04<00:25, 3878.84it/s]
22%|██▏ | 26428/118287 [00:05<00:19, 4642.72it/s]
17%|█▋ | 19684/118287 [00:04<00:24, 3976.64it/s]
22%|██▏ | 26610/118287 [00:05<00:19, 4650.62it/s]
3%|▎ | 3706/118287 [00:01<00:32, 3506.04it/s]
22%|██▏ | 26132/118287 [00:06<00:21, 4195.13it/s]
22%|██▏ | 26011/118287 [00:05<00:21, 4245.36it/s]
21%|██ | 24533/118287 [00:05<00:22, 4172.26it/s]
17%|█▋ | 19709/118287 [00:05<00:25, 3881.12it/s]
23%|██▎ | 26894/118287 [00:05<00:19, 4642.06it/s]
17%|█▋ | 20083/118287 [00:05<00:24, 3948.12it/s]
23%|██▎ | 27088/118287 [00:05<00:19, 4688.63it/s]
3%|▎ | 4050/118287 [00:01<00:33, 3379.52it/s]
22%|██▏ | 26436/118287 [00:05<00:21, 4243.39it/s]
22%|██▏ | 26553/118287 [00:06<00:22, 4110.57it/s]
21%|██ | 24952/118287 [00:05<00:22, 4132.21it/s]
17%|█▋ | 20098/118287 [00:05<00:25, 3875.75it/s]
23%|██▎ | 27359/118287 [00:05<00:19, 4614.99it/s]
17%|█▋ | 20479/118287 [00:05<00:24, 3947.71it/s]
23%|██▎ | 27568/118287 [00:05<00:19, 4721.48it/s]
4%|▎ | 4385/118287 [00:01<00:34, 3303.19it/s]
23%|██▎ | 26861/118287 [00:05<00:21, 4210.57it/s]
23%|██▎ | 26979/118287 [00:06<00:22, 4150.31it/s]
21%|██▏ | 25369/118287 [00:06<00:22, 4141.83it/s]
17%|█▋ | 20487/118287 [00:05<00:25, 3879.78it/s]
24%|██▎ | 27821/118287 [00:06<00:19, 4598.43it/s]
18%|█▊ | 20874/118287 [00:05<00:25, 3863.74it/s]
24%|██▎ | 28041/118287 [00:06<00:19, 4644.37it/s]
23%|██▎ | 27406/118287 [00:06<00:21, 4184.42it/s]
23%|██▎ | 27283/118287 [00:06<00:21, 4149.70it/s]
4%|▍ | 4714/118287 [00:01<00:35, 3183.09it/s]
22%|██▏ | 25788/118287 [00:06<00:22, 4152.49it/s]
18%|█▊ | 20876/118287 [00:05<00:25, 3833.19it/s]
24%|██▍ | 28282/118287 [00:06<00:19, 4572.52it/s]
18%|█▊ | 21261/118287 [00:05<00:25, 3827.93it/s]
24%|██▍ | 28520/118287 [00:06<00:19, 4680.32it/s]
24%|██▎ | 27826/118287 [00:06<00:21, 4162.64it/s]
4%|▍ | 5046/118287 [00:01<00:35, 3221.64it/s]
23%|██▎ | 27699/118287 [00:06<00:22, 4080.32it/s]
22%|██▏ | 26221/118287 [00:06<00:21, 4204.13it/s]
18%|█▊ | 21260/118287 [00:05<00:25, 3766.14it/s]
24%|██▍ | 28760/118287 [00:06<00:19, 4629.80it/s]
18%|█▊ | 21646/118287 [00:05<00:25, 3819.92it/s]
25%|██▍ | 29003/118287 [00:06<00:18, 4721.46it/s]
24%|██▍ | 28248/118287 [00:06<00:21, 4179.37it/s]
5%|▍ | 5389/118287 [00:01<00:34, 3279.58it/s]
24%|██▍ | 28108/118287 [00:06<00:22, 3995.96it/s]
23%|██▎ | 26642/118287 [00:06<00:21, 4183.81it/s]
18%|█▊ | 21644/118287 [00:05<00:25, 3787.20it/s]
25%|██▍ | 29226/118287 [00:06<00:19, 4637.55it/s]
19%|█▊ | 22029/118287 [00:05<00:25, 3779.08it/s]
25%|██▍ | 29476/118287 [00:06<00:19, 4644.44it/s]
24%|██▍ | 28667/118287 [00:06<00:21, 4174.07it/s]
5%|▍ | 5738/118287 [00:01<00:33, 3338.34it/s]
24%|██▍ | 28509/118287 [00:06<00:22, 3996.11it/s]
23%|██▎ | 27086/118287 [00:06<00:21, 4254.51it/s]
19%|█▊ | 22024/118287 [00:05<00:25, 3736.54it/s]
25%|██▌ | 29690/118287 [00:06<00:19, 4532.12it/s]
19%|█▉ | 22409/118287 [00:05<00:25, 3782.80it/s]
25%|██▌ | 29942/118287 [00:06<00:19, 4638.09it/s]
25%|██▍ | 29100/118287 [00:06<00:21, 4218.90it/s]
5%|▌ | 6128/118287 [00:01<00:32, 3486.76it/s]
24%|██▍ | 28913/118287 [00:06<00:22, 4009.03it/s]
23%|██▎ | 27512/118287 [00:06<00:21, 4231.03it/s]
19%|█▉ | 22410/118287 [00:05<00:25, 3772.17it/s]
25%|██▌ | 30144/118287 [00:06<00:19, 4455.38it/s]
19%|█▉ | 22788/118287 [00:05<00:25, 3784.28it/s]
26%|██▌ | 30407/118287 [00:06<00:19, 4605.03it/s]
5%|▌ | 6504/118287 [00:01<00:31, 3564.24it/s]
25%|██▍ | 29523/118287 [00:06<00:21, 4174.94it/s]
25%|██▍ | 29315/118287 [00:06<00:22, 3991.81it/s]
24%|██▎ | 27936/118287 [00:06<00:21, 4218.31it/s]
19%|█▉ | 22798/118287 [00:05<00:25, 3800.10it/s]
26%|██▌ | 30633/118287 [00:06<00:19, 4575.96it/s]
20%|█▉ | 23167/118287 [00:05<00:25, 3777.59it/s]
26%|██▌ | 30905/118287 [00:06<00:18, 4700.39it/s]
6%|▌ | 6864/118287 [00:01<00:31, 3571.53it/s]
25%|██▌ | 29947/118287 [00:07<00:21, 4191.62it/s]
25%|██▌ | 29715/118287 [00:06<00:22, 3958.16it/s]
24%|██▍ | 28359/118287 [00:06<00:21, 4204.61it/s]
20%|█▉ | 23185/118287 [00:06<00:24, 3819.49it/s]
26%|██▋ | 31092/118287 [00:06<00:19, 4557.06it/s]
20%|█▉ | 23545/118287 [00:05<00:25, 3764.50it/s]
27%|██▋ | 31376/118287 [00:06<00:18, 4649.85it/s]
6%|▌ | 7223/118287 [00:02<00:31, 3526.49it/s]
26%|██▌ | 30367/118287 [00:07<00:21, 4162.19it/s]
25%|██▌ | 30112/118287 [00:06<00:22, 3858.25it/s]
24%|██▍ | 28801/118287 [00:06<00:20, 4263.40it/s]
20%|█▉ | 23568/118287 [00:06<00:24, 3797.31it/s]
27%|██▋ | 31553/118287 [00:06<00:18, 4568.18it/s]
20%|██ | 23922/118287 [00:06<00:25, 3728.69it/s]
27%|██▋ | 31842/118287 [00:06<00:18, 4622.21it/s]
26%|██▌ | 30802/118287 [00:07<00:20, 4216.65it/s]
6%|▋ | 7577/118287 [00:02<00:31, 3473.52it/s]
26%|██▌ | 30541/118287 [00:06<00:22, 3976.67it/s]
25%|██▍ | 29228/118287 [00:06<00:21, 4240.02it/s]
20%|██ | 23948/118287 [00:06<00:24, 3774.39it/s]
21%|██ | 24320/118287 [00:06<00:24, 3800.19it/s]
27%|██▋ | 32011/118287 [00:07<00:19, 4461.00it/s]
27%|██▋ | 32305/118287 [00:06<00:18, 4574.39it/s]
26%|██▋ | 31224/118287 [00:07<00:20, 4204.81it/s]
7%|▋ | 7926/118287 [00:02<00:31, 3451.33it/s]
26%|██▌ | 30950/118287 [00:06<00:21, 4005.71it/s]
25%|██▌ | 29653/118287 [00:07<00:21, 4138.84it/s]
21%|██ | 24355/118287 [00:06<00:24, 3857.65it/s]
21%|██ | 24717/118287 [00:06<00:24, 3849.22it/s]
27%|██▋ | 32459/118287 [00:07<00:19, 4465.68it/s]
28%|██▊ | 32763/118287 [00:07<00:18, 4562.88it/s]
27%|██▋ | 31659/118287 [00:07<00:20, 4245.66it/s]
7%|▋ | 8272/118287 [00:02<00:32, 3437.51it/s]
27%|██▋ | 31352/118287 [00:07<00:21, 3972.66it/s]
25%|██▌ | 30068/118287 [00:07<00:21, 4087.49it/s]
21%|██ | 24763/118287 [00:06<00:23, 3920.02it/s]
21%|██ | 25103/118287 [00:06<00:24, 3837.99it/s]
28%|██▊ | 32907/118287 [00:07<00:19, 4451.04it/s]
28%|██▊ | 33255/118287 [00:07<00:18, 4662.88it/s]
27%|██▋ | 32084/118287 [00:07<00:20, 4158.15it/s]
7%|▋ | 8617/118287 [00:02<00:32, 3393.99it/s]
27%|██▋ | 31755/118287 [00:07<00:21, 3989.69it/s]
26%|██▌ | 30508/118287 [00:07<00:21, 4174.84it/s]
21%|██▏ | 25156/118287 [00:06<00:24, 3843.74it/s]
22%|██▏ | 25493/118287 [00:06<00:24, 3855.21it/s]
28%|██▊ | 33403/118287 [00:07<00:18, 4589.42it/s]
29%|██▊ | 33732/118287 [00:07<00:18, 4694.07it/s]
27%|██▋ | 32501/118287 [00:07<00:20, 4135.73it/s]
8%|▊ | 8963/118287 [00:02<00:32, 3411.58it/s]
27%|██▋ | 32155/118287 [00:07<00:22, 3906.86it/s]
26%|██▌ | 30927/118287 [00:07<00:20, 4176.91it/s]
22%|██▏ | 25542/118287 [00:06<00:24, 3806.56it/s]
22%|██▏ | 25879/118287 [00:06<00:24, 3821.90it/s]
29%|██▊ | 33874/118287 [00:07<00:18, 4621.01it/s]
29%|██▉ | 34227/118287 [00:07<00:17, 4766.33it/s]
28%|██▊ | 32916/118287 [00:07<00:20, 4086.57it/s]
8%|▊ | 9312/118287 [00:02<00:31, 3431.77it/s]
28%|██▊ | 32551/118287 [00:07<00:21, 3918.31it/s]
26%|██▋ | 31346/118287 [00:07<00:20, 4146.45it/s]
22%|██▏ | 25924/118287 [00:06<00:24, 3808.72it/s]
22%|██▏ | 26299/118287 [00:06<00:23, 3926.61it/s]
29%|██▉ | 34349/118287 [00:07<00:18, 4656.85it/s]
29%|██▉ | 34746/118287 [00:07<00:17, 4885.19it/s]
28%|██▊ | 33383/118287 [00:07<00:19, 4245.22it/s]
8%|▊ | 9715/118287 [00:02<00:30, 3590.07it/s]
28%|██▊ | 32944/118287 [00:07<00:21, 3907.85it/s]
27%|██▋ | 31770/118287 [00:07<00:20, 4168.74it/s]
22%|██▏ | 26330/118287 [00:06<00:23, 3880.73it/s]
29%|██▉ | 34850/118287 [00:07<00:17, 4754.83it/s]
23%|██▎ | 26693/118287 [00:06<00:23, 3891.08it/s]
30%|██▉ | 35236/118287 [00:07<00:17, 4821.75it/s]
29%|██▊ | 33821/118287 [00:07<00:19, 4283.28it/s]
9%|▊ | 10077/118287 [00:02<00:30, 3520.71it/s]
28%|██▊ | 33385/118287 [00:07<00:21, 4038.99it/s]
27%|██▋ | 32188/118287 [00:07<00:21, 4090.52it/s]
23%|██▎ | 26724/118287 [00:06<00:23, 3897.47it/s]
23%|██▎ | 27096/118287 [00:06<00:23, 3921.09it/s]
30%|██▉ | 35327/118287 [00:07<00:17, 4709.32it/s]
30%|███ | 35720/118287 [00:07<00:17, 4822.48it/s]
29%|██▉ | 34275/118287 [00:08<00:19, 4354.38it/s]
9%|▉ | 10432/118287 [00:02<00:30, 3527.47it/s]
29%|██▊ | 33791/118287 [00:07<00:20, 4042.22it/s]
28%|██▊ | 32598/118287 [00:07<00:20, 4089.91it/s]
23%|██▎ | 27120/118287 [00:07<00:23, 3914.70it/s]
23%|██▎ | 27490/118287 [00:06<00:23, 3922.69it/s]
30%|███ | 35811/118287 [00:07<00:17, 4747.51it/s]
31%|███ | 36219/118287 [00:07<00:16, 4868.91it/s]
29%|██▉ | 34749/118287 [00:08<00:18, 4458.07it/s]
9%|▉ | 10786/118287 [00:03<00:30, 3522.57it/s]
29%|██▉ | 34219/118287 [00:07<00:20, 4109.97it/s]
28%|██▊ | 33008/118287 [00:07<00:20, 4081.41it/s]
23%|██▎ | 27525/118287 [00:07<00:22, 3951.74it/s]
31%|███ | 36287/118287 [00:07<00:17, 4717.73it/s]
24%|██▎ | 27883/118287 [00:07<00:23, 3890.27it/s]
31%|███ | 36707/118287 [00:07<00:17, 4768.22it/s]
30%|██▉ | 35197/118287 [00:08<00:19, 4358.70it/s]
9%|▉ | 11140/118287 [00:03<00:30, 3470.68it/s]
29%|██▉ | 34669/118287 [00:07<00:19, 4217.82it/s]
28%|██▊ | 33463/118287 [00:07<00:20, 4210.83it/s]
24%|██▎ | 27921/118287 [00:07<00:23, 3912.06it/s]
24%|██▍ | 28273/118287 [00:07<00:23, 3875.46it/s]
31%|███ | 36760/118287 [00:08<00:17, 4642.33it/s]
31%|███▏ | 37185/118287 [00:07<00:17, 4658.50it/s]
30%|███ | 35635/118287 [00:08<00:19, 4337.70it/s]
10%|▉ | 11488/118287 [00:03<00:31, 3436.83it/s]
30%|██▉ | 35093/118287 [00:07<00:20, 4130.32it/s]
29%|██▊ | 33901/118287 [00:08<00:19, 4255.18it/s]
24%|██▍ | 28314/118287 [00:07<00:22, 3915.26it/s]
24%|██▍ | 28666/118287 [00:07<00:23, 3884.65it/s]
31%|███▏ | 37225/118287 [00:08<00:17, 4557.24it/s]
32%|███▏ | 37653/118287 [00:08<00:17, 4611.46it/s]
30%|███ | 36070/118287 [00:08<00:19, 4307.16it/s]
10%|█ | 11867/118287 [00:03<00:30, 3530.22it/s]
30%|███ | 35508/118287 [00:08<00:20, 4111.77it/s]
29%|██▉ | 34349/118287 [00:08<00:19, 4315.90it/s]
24%|██▍ | 28720/118287 [00:07<00:22, 3956.68it/s]
25%|██▍ | 29055/118287 [00:07<00:23, 3867.30it/s]
32%|███▏ | 37682/118287 [00:08<00:17, 4511.23it/s]
32%|███▏ | 38116/118287 [00:08<00:17, 4606.37it/s]
10%|█ | 12252/118287 [00:03<00:29, 3615.37it/s]
31%|███ | 36502/118287 [00:08<00:19, 4244.07it/s]
30%|███ | 35946/118287 [00:08<00:19, 4187.65it/s]
29%|██▉ | 34811/118287 [00:08<00:18, 4402.09it/s]
25%|██▍ | 29118/118287 [00:07<00:22, 3957.92it/s]
25%|██▍ | 29442/118287 [00:07<00:23, 3859.51it/s]
32%|███▏ | 38134/118287 [00:08<00:17, 4505.13it/s]
33%|███▎ | 38619/118287 [00:08<00:16, 4723.28it/s]
11%|█ | 12617/118287 [00:03<00:29, 3625.22it/s]
31%|███ | 36928/118287 [00:08<00:19, 4087.18it/s]
31%|███ | 36366/118287 [00:08<00:19, 4116.52it/s]
30%|██▉ | 35253/118287 [00:08<00:18, 4385.26it/s]
25%|██▍ | 29514/118287 [00:07<00:22, 3884.27it/s]
25%|██▌ | 29829/118287 [00:07<00:23, 3833.62it/s]
33%|███▎ | 38626/118287 [00:08<00:17, 4620.82it/s]
33%|███▎ | 39093/118287 [00:08<00:17, 4652.70it/s]
11%|█ | 12981/118287 [00:03<00:29, 3589.02it/s]
32%|███▏ | 37339/118287 [00:08<00:19, 4057.27it/s]
31%|███ | 36779/118287 [00:08<00:19, 4083.05it/s]
30%|███ | 35694/118287 [00:08<00:18, 4388.96it/s]
25%|██▌ | 29903/118287 [00:07<00:22, 3855.44it/s]
26%|██▌ | 30213/118287 [00:07<00:23, 3758.97it/s]
33%|███▎ | 39090/118287 [00:08<00:17, 4624.85it/s]
33%|███▎ | 39578/118287 [00:08<00:16, 4705.18it/s]
11%|█▏ | 13341/118287 [00:03<00:29, 3539.73it/s]
31%|███ | 36145/118287 [00:08<00:18, 4422.98it/s]
31%|███▏ | 37189/118287 [00:08<00:20, 4035.71it/s]
32%|███▏ | 37747/118287 [00:08<00:20, 3949.20it/s]
26%|██▌ | 30289/118287 [00:07<00:22, 3846.42it/s]
26%|██▌ | 30639/118287 [00:07<00:22, 3894.18it/s]
33%|███▎ | 39554/118287 [00:08<00:17, 4620.91it/s]
34%|███▍ | 40057/118287 [00:08<00:16, 4730.08it/s]
12%|█▏ | 13705/118287 [00:03<00:29, 3564.38it/s]
32%|███▏ | 37597/118287 [00:08<00:19, 4048.19it/s]
32%|███▏ | 38144/118287 [00:09<00:20, 3948.30it/s]
31%|███ | 36588/118287 [00:08<00:18, 4316.27it/s]
26%|██▌ | 30718/118287 [00:07<00:22, 3962.49it/s]
26%|██▌ | 31033/118287 [00:07<00:22, 3907.69it/s]
34%|███▍ | 40017/118287 [00:08<00:16, 4615.71it/s]
34%|███▍ | 40531/118287 [00:08<00:16, 4664.76it/s]
12%|█▏ | 14066/118287 [00:03<00:29, 3574.11it/s]
33%|███▎ | 38568/118287 [00:09<00:19, 4020.44it/s]
32%|███▏ | 38003/118287 [00:08<00:20, 3963.24it/s]
31%|███▏ | 37021/118287 [00:08<00:19, 4226.97it/s]
26%|██▋ | 31116/118287 [00:08<00:22, 3915.21it/s]
27%|██▋ | 31425/118287 [00:07<00:22, 3889.81it/s]
34%|███▍ | 40479/118287 [00:08<00:16, 4582.88it/s]
35%|███▍ | 40999/118287 [00:08<00:16, 4641.49it/s]
12%|█▏ | 14426/118287 [00:04<00:29, 3580.68it/s]
33%|███▎ | 38984/118287 [00:09<00:19, 4057.04it/s]
32%|███▏ | 38441/118287 [00:08<00:19, 4072.18it/s]
32%|███▏ | 37445/118287 [00:08<00:19, 4222.31it/s]
27%|██▋ | 31509/118287 [00:08<00:22, 3906.23it/s]
27%|██▋ | 31819/118287 [00:08<00:22, 3898.83it/s]
35%|███▍ | 40938/118287 [00:08<00:17, 4507.18it/s]
35%|███▌ | 41467/118287 [00:08<00:16, 4648.85it/s]
12%|█▏ | 14785/118287 [00:04<00:29, 3525.90it/s]
33%|███▎ | 39404/118287 [00:09<00:19, 4079.49it/s]
33%|███▎ | 38881/118287 [00:08<00:19, 4164.36it/s]
32%|███▏ | 37868/118287 [00:08<00:19, 4155.26it/s]
27%|██▋ | 31904/118287 [00:08<00:22, 3916.87it/s]
35%|███▌ | 41410/118287 [00:09<00:16, 4561.25it/s]
27%|██▋ | 32210/118287 [00:08<00:22, 3785.56it/s]
35%|███▌ | 41938/118287 [00:08<00:16, 4660.38it/s]
13%|█▎ | 15138/118287 [00:04<00:30, 3425.64it/s]
34%|███▎ | 39834/118287 [00:09<00:18, 4141.98it/s]
33%|███▎ | 39300/118287 [00:08<00:18, 4170.43it/s]
32%|███▏ | 38297/118287 [00:09<00:19, 4192.24it/s]
27%|██▋ | 32297/118287 [00:08<00:22, 3839.08it/s]
35%|███▌ | 41875/118287 [00:09<00:16, 4582.45it/s]
28%|██▊ | 32609/118287 [00:08<00:22, 3842.16it/s]
36%|███▌ | 42405/118287 [00:09<00:16, 4659.24it/s]
13%|█▎ | 15482/118287 [00:04<00:30, 3388.82it/s]
34%|███▍ | 40249/118287 [00:09<00:19, 4092.33it/s]
34%|███▎ | 39719/118287 [00:09<00:18, 4148.40it/s]
33%|███▎ | 38753/118287 [00:09<00:18, 4294.23it/s]
28%|██▊ | 32689/118287 [00:08<00:22, 3859.27it/s]
36%|███▌ | 42334/118287 [00:09<00:16, 4547.69it/s]
28%|██▊ | 32995/118287 [00:08<00:22, 3794.99it/s]
36%|███▋ | 42887/118287 [00:09<00:16, 4704.09it/s]
13%|█▎ | 15822/118287 [00:04<00:30, 3376.64it/s]
34%|███▍ | 40135/118287 [00:09<00:18, 4131.73it/s]
34%|███▍ | 40659/118287 [00:09<00:19, 4019.13it/s]
33%|███▎ | 39184/118287 [00:09<00:18, 4296.98it/s]
28%|██▊ | 33079/118287 [00:08<00:22, 3869.89it/s]
36%|███▌ | 42800/118287 [00:09<00:16, 4563.20it/s]
28%|██▊ | 33425/118287 [00:08<00:21, 3932.33it/s]
37%|███▋ | 43358/118287 [00:09<00:15, 4698.86it/s]
14%|█▎ | 16176/118287 [00:04<00:29, 3422.81it/s]
35%|███▍ | 41099/118287 [00:09<00:18, 4125.65it/s]
34%|███▍ | 40549/118287 [00:09<00:19, 4073.62it/s]
33%|███▎ | 39616/118287 [00:09<00:18, 4295.97it/s]
28%|██▊ | 33502/118287 [00:08<00:21, 3970.02it/s]
37%|███▋ | 43276/118287 [00:09<00:16, 4620.50it/s]
29%|██▊ | 33821/118287 [00:08<00:21, 3932.14it/s]
37%|███▋ | 43829/118287 [00:09<00:15, 4681.44it/s]
14%|█▍ | 16535/118287 [00:04<00:29, 3470.97it/s]
35%|███▍ | 40957/118287 [00:09<00:18, 4073.54it/s]
35%|███▌ | 41513/118287 [00:09<00:18, 4091.20it/s]
34%|███▍ | 40068/118287 [00:09<00:17, 4358.64it/s]
29%|██▊ | 33903/118287 [00:08<00:21, 3981.22it/s]
29%|██▉ | 34234/118287 [00:08<00:21, 3983.78it/s]
37%|███▋ | 43739/118287 [00:09<00:16, 4586.60it/s]
37%|███▋ | 44298/118287 [00:09<00:15, 4656.93it/s]
14%|█▍ | 16897/118287 [00:04<00:28, 3513.57it/s]
35%|███▍ | 41386/118287 [00:09<00:18, 4133.13it/s]
35%|███▌ | 41932/118287 [00:09<00:18, 4120.05it/s]
34%|███▍ | 40505/118287 [00:09<00:18, 4311.73it/s]
29%|██▉ | 34318/118287 [00:08<00:20, 4030.10it/s]
29%|██▉ | 34676/118287 [00:08<00:20, 4098.74it/s]
37%|███▋ | 44198/118287 [00:09<00:16, 4556.28it/s]
38%|███▊ | 44785/118287 [00:09<00:15, 4716.78it/s]
15%|█▍ | 17254/118287 [00:04<00:28, 3527.56it/s]
35%|███▌ | 41800/118287 [00:09<00:18, 4114.18it/s]
36%|███▌ | 42345/118287 [00:10<00:18, 4084.29it/s]
29%|██▉ | 34754/118287 [00:08<00:20, 4116.87it/s]
35%|███▍ | 40937/118287 [00:09<00:18, 4249.83it/s]
38%|███▊ | 44654/118287 [00:09<00:16, 4548.64it/s]
30%|██▉ | 35088/118287 [00:08<00:20, 4013.48it/s]
38%|███▊ | 45257/118287 [00:09<00:15, 4689.42it/s]
15%|█▍ | 17608/118287 [00:05<00:29, 3464.22it/s]
36%|███▌ | 42771/118287 [00:10<00:18, 4131.39it/s]
36%|███▌ | 42212/118287 [00:09<00:18, 4061.59it/s]
35%|███▍ | 41389/118287 [00:09<00:17, 4327.02it/s]
30%|██▉ | 35167/118287 [00:09<00:20, 4053.04it/s]
38%|███▊ | 45142/118287 [00:09<00:15, 4642.99it/s]
30%|███ | 35494/118287 [00:08<00:20, 4022.01it/s]
39%|███▊ | 45727/118287 [00:09<00:15, 4640.33it/s]
15%|█▌ | 17959/118287 [00:05<00:28, 3477.27it/s]
37%|███▋ | 43185/118287 [00:10<00:18, 4130.46it/s]
36%|███▌ | 42621/118287 [00:09<00:18, 4067.89it/s]
35%|███▌ | 41823/118287 [00:09<00:17, 4316.95it/s]
30%|███ | 35574/118287 [00:09<00:20, 4040.88it/s]
30%|███ | 35908/118287 [00:09<00:20, 4056.02it/s]
39%|███▊ | 45607/118287 [00:09<00:15, 4562.31it/s]
39%|███▉ | 46226/118287 [00:09<00:15, 4738.14it/s]
15%|█▌ | 18313/118287 [00:05<00:28, 3493.34it/s]
37%|███▋ | 43599/118287 [00:10<00:18, 4120.17it/s]
36%|███▋ | 43032/118287 [00:09<00:18, 4079.51it/s]
36%|███▌ | 42256/118287 [00:10<00:17, 4306.08it/s]
30%|███ | 36003/118287 [00:09<00:20, 4109.10it/s]
39%|███▉ | 46078/118287 [00:10<00:15, 4600.39it/s]
31%|███ | 36315/118287 [00:09<00:20, 4025.55it/s]
40%|███▉ | 46729/118287 [00:09<00:14, 4821.63it/s]
16%|█▌ | 18663/118287 [00:05<00:29, 3425.54it/s]
37%|███▋ | 43441/118287 [00:10<00:18, 4051.01it/s]
37%|███▋ | 44012/118287 [00:10<00:18, 4070.29it/s]
36%|███▌ | 42696/118287 [00:10<00:17, 4333.30it/s]
31%|███ | 36415/118287 [00:09<00:20, 4032.35it/s]
39%|███▉ | 46577/118287 [00:10<00:15, 4709.67it/s]
31%|███ | 36719/118287 [00:09<00:20, 3993.49it/s]
40%|███▉ | 47213/118287 [00:10<00:14, 4739.48it/s]
16%|█▌ | 19013/118287 [00:05<00:28, 3447.06it/s]
38%|███▊ | 44427/118287 [00:10<00:18, 4089.03it/s]
37%|███▋ | 43847/118287 [00:10<00:18, 4014.32it/s]
36%|███▋ | 43144/118287 [00:10<00:17, 4376.15it/s]
31%|███ | 36820/118287 [00:09<00:20, 3918.07it/s]
40%|███▉ | 47050/118287 [00:10<00:15, 4674.12it/s]
31%|███▏ | 37119/118287 [00:09<00:20, 3886.57it/s]
40%|████ | 47693/118287 [00:10<00:14, 4756.77it/s]
16%|█▋ | 19359/118287 [00:05<00:28, 3433.84it/s]
38%|███▊ | 44847/118287 [00:10<00:17, 4120.86it/s]
37%|███▋ | 44249/118287 [00:10<00:18, 3978.64it/s]
37%|███▋ | 43582/118287 [00:10<00:17, 4366.11it/s]
31%|███▏ | 37214/118287 [00:09<00:20, 3889.89it/s]
40%|████ | 47519/118287 [00:10<00:15, 4660.21it/s]
32%|███▏ | 37510/118287 [00:09<00:20, 3887.15it/s]
41%|████ | 48170/118287 [00:10<00:15, 4642.20it/s]
17%|█▋ | 19703/118287 [00:05<00:28, 3429.28it/s]
38%|███▊ | 45263/118287 [00:10<00:17, 4132.34it/s]
38%|███▊ | 44650/118287 [00:10<00:18, 3987.95it/s]
37%|███▋ | 44019/118287 [00:10<00:17, 4334.02it/s]
32%|███▏ | 37611/118287 [00:09<00:20, 3913.45it/s]
41%|████ | 47986/118287 [00:10<00:15, 4616.55it/s]
32%|███▏ | 37900/118287 [00:09<00:21, 3791.14it/s]
41%|████ | 48663/118287 [00:10<00:14, 4721.03it/s]
17%|█▋ | 20049/118287 [00:05<00:28, 3437.67it/s]
39%|███▊ | 45677/118287 [00:10<00:17, 4083.13it/s]
38%|███▊ | 45079/118287 [00:10<00:17, 4072.75it/s]
38%|███▊ | 44463/118287 [00:10<00:16, 4361.59it/s]
32%|███▏ | 38004/118287 [00:09<00:20, 3854.42it/s]
41%|████ | 48457/118287 [00:10<00:15, 4642.55it/s]
42%|████▏ | 49149/118287 [00:10<00:14, 4761.76it/s]
32%|███▏ | 38281/118287 [00:09<00:21, 3779.93it/s]
17%|█▋ | 20393/118287 [00:05<00:28, 3426.93it/s]
39%|███▉ | 46095/118287 [00:10<00:17, 4110.27it/s]
38%|███▊ | 44922/118287 [00:10<00:16, 4425.79it/s]
38%|███▊ | 45487/118287 [00:10<00:18, 3985.35it/s]
32%|███▏ | 38411/118287 [00:09<00:20, 3914.16it/s]
41%|████▏ | 48943/118287 [00:10<00:14, 4704.76it/s]
33%|███▎ | 38688/118287 [00:09<00:20, 3862.40it/s]
42%|████▏ | 49627/118287 [00:10<00:14, 4634.31it/s]
18%|█▊ | 20736/118287 [00:05<00:28, 3397.20it/s]
39%|███▉ | 46532/118287 [00:11<00:17, 4183.24it/s]
38%|███▊ | 45365/118287 [00:10<00:16, 4417.47it/s]
39%|███▉ | 45903/118287 [00:10<00:17, 4035.27it/s]
33%|███▎ | 38823/118287 [00:09<00:19, 3973.23it/s]
42%|████▏ | 49414/118287 [00:10<00:14, 4614.89it/s]
33%|███▎ | 39088/118287 [00:09<00:20, 3897.86it/s]
42%|████▏ | 50095/118287 [00:10<00:14, 4647.75it/s]
18%|█▊ | 21076/118287 [00:06<00:29, 3338.96it/s]
40%|███▉ | 46956/118287 [00:11<00:16, 4199.86it/s]
39%|███▉ | 46332/118287 [00:10<00:17, 4107.38it/s]
39%|███▊ | 45808/118287 [00:10<00:16, 4368.88it/s]
33%|███▎ | 39222/118287 [00:10<00:20, 3855.07it/s]
42%|████▏ | 49877/118287 [00:10<00:15, 4540.38it/s]
33%|███▎ | 39494/118287 [00:10<00:19, 3940.94it/s]
43%|████▎ | 50561/118287 [00:10<00:14, 4649.83it/s]
18%|█▊ | 21471/118287 [00:06<00:27, 3500.74it/s]
40%|████ | 47377/118287 [00:11<00:17, 4162.49it/s]
40%|███▉ | 46768/118287 [00:10<00:17, 4177.28it/s]
39%|███▉ | 46278/118287 [00:10<00:16, 4462.70it/s]
33%|███▎ | 39620/118287 [00:10<00:20, 3888.38it/s]
43%|████▎ | 50351/118287 [00:10<00:14, 4595.96it/s]
34%|███▎ | 39909/118287 [00:10<00:19, 4000.43it/s]
43%|████▎ | 51044/118287 [00:10<00:14, 4699.15it/s]
40%|████ | 47794/118287 [00:11<00:16, 4164.12it/s]
18%|█▊ | 21824/118287 [00:06<00:27, 3470.75it/s]
40%|███▉ | 46752/118287 [00:11<00:15, 4538.46it/s]
40%|███▉ | 47187/118287 [00:10<00:17, 4092.57it/s]
34%|███▍ | 40021/118287 [00:10<00:19, 3923.87it/s]
43%|████▎ | 50812/118287 [00:11<00:14, 4573.55it/s]
34%|███▍ | 40310/118287 [00:10<00:19, 3910.98it/s]
44%|████▎ | 51538/118287 [00:11<00:14, 4765.43it/s]
19%|█▊ | 22173/118287 [00:06<00:27, 3472.57it/s]
41%|████ | 48211/118287 [00:11<00:16, 4129.72it/s]
40%|███▉ | 47207/118287 [00:11<00:15, 4472.00it/s]
40%|████ | 47618/118287 [00:11<00:17, 4154.12it/s]
34%|███▍ | 40415/118287 [00:10<00:20, 3880.19it/s]
43%|████▎ | 51283/118287 [00:11<00:14, 4612.24it/s]
34%|███▍ | 40703/118287 [00:10<00:19, 3889.64it/s]
44%|████▍ | 52016/118287 [00:11<00:13, 4734.53it/s]
19%|█▉ | 22540/118287 [00:06<00:27, 3524.88it/s]
41%|████ | 48661/118287 [00:11<00:16, 4227.59it/s]
40%|████ | 47667/118287 [00:11<00:15, 4503.16it/s]
41%|████ | 48035/118287 [00:11<00:17, 4086.47it/s]
34%|███▍ | 40804/118287 [00:10<00:20, 3826.48it/s]
44%|████▎ | 51745/118287 [00:11<00:14, 4599.44it/s]
35%|███▍ | 41110/118287 [00:10<00:19, 3941.09it/s]
44%|████▍ | 52490/118287 [00:11<00:14, 4652.77it/s]
19%|█▉ | 22903/118287 [00:06<00:26, 3554.60it/s]
41%|████▏ | 49088/118287 [00:11<00:16, 4239.62it/s]
41%|████ | 48453/118287 [00:11<00:16, 4112.68it/s]
41%|████ | 48118/118287 [00:11<00:15, 4411.49it/s]
35%|███▍ | 41189/118287 [00:10<00:20, 3825.49it/s]
44%|████▍ | 52206/118287 [00:11<00:14, 4519.17it/s]
35%|███▌ | 41505/118287 [00:10<00:19, 3892.50it/s]
45%|████▍ | 52956/118287 [00:11<00:14, 4522.30it/s]
20%|█▉ | 23287/118287 [00:06<00:26, 3634.23it/s]
42%|████▏ | 49513/118287 [00:11<00:16, 4135.20it/s]
41%|████▏ | 48896/118287 [00:11<00:16, 4199.07it/s]
41%|████ | 48578/118287 [00:11<00:15, 4462.57it/s]
35%|███▌ | 41586/118287 [00:10<00:19, 3866.27it/s]
45%|████▍ | 52664/118287 [00:11<00:14, 4534.62it/s]
35%|███▌ | 41896/118287 [00:10<00:19, 3896.61it/s]
45%|████▌ | 53430/118287 [00:11<00:14, 4584.37it/s]
20%|█▉ | 23652/118287 [00:06<00:26, 3574.06it/s]
42%|████▏ | 49938/118287 [00:11<00:16, 4168.72it/s]
41%|████▏ | 49043/118287 [00:11<00:15, 4508.00it/s]
42%|████▏ | 49317/118287 [00:11<00:16, 4131.08it/s]
35%|███▌ | 41974/118287 [00:10<00:20, 3785.38it/s]
45%|████▍ | 53118/118287 [00:11<00:14, 4453.14it/s]
36%|███▌ | 42287/118287 [00:10<00:19, 3850.86it/s]
46%|████▌ | 53933/118287 [00:11<00:13, 4703.71it/s]
20%|██ | 24026/118287 [00:06<00:26, 3618.13it/s]
43%|████▎ | 50372/118287 [00:11<00:16, 4213.89it/s]
42%|████▏ | 49495/118287 [00:11<00:15, 4427.71it/s]
42%|████▏ | 49731/118287 [00:11<00:17, 4017.39it/s]
36%|███▌ | 42354/118287 [00:10<00:20, 3779.67it/s]
45%|████▌ | 53594/118287 [00:11<00:14, 4540.46it/s]
36%|███▌ | 42683/118287 [00:10<00:19, 3882.71it/s]
46%|████▌ | 54405/118287 [00:11<00:13, 4682.79it/s]
21%|██ | 24427/118287 [00:06<00:25, 3724.37it/s]
43%|████▎ | 50795/118287 [00:12<00:16, 4153.31it/s]
42%|████▏ | 49940/118287 [00:11<00:15, 4433.31it/s]
42%|████▏ | 50148/118287 [00:11<00:16, 4056.19it/s]
36%|███▌ | 42735/118287 [00:11<00:19, 3781.11it/s]
46%|████▌ | 54083/118287 [00:11<00:13, 4637.42it/s]
36%|███▋ | 43072/118287 [00:10<00:19, 3869.47it/s]
46%|████▋ | 54875/118287 [00:11<00:13, 4645.16it/s]
21%|██ | 24812/118287 [00:07<00:24, 3759.84it/s]
43%|████▎ | 51246/118287 [00:12<00:15, 4252.73it/s]
43%|████▎ | 50393/118287 [00:11<00:15, 4461.36it/s]
43%|████▎ | 50555/118287 [00:11<00:16, 4052.59it/s]
36%|███▋ | 43118/118287 [00:11<00:19, 3795.62it/s]
46%|████▌ | 54548/118287 [00:11<00:13, 4636.18it/s]
37%|███▋ | 43460/118287 [00:11<00:19, 3838.90it/s]
47%|████▋ | 55347/118287 [00:11<00:13, 4665.15it/s]
21%|██▏ | 25189/118287 [00:07<00:24, 3733.75it/s]
44%|████▎ | 51682/118287 [00:12<00:15, 4283.09it/s]
43%|████▎ | 50840/118287 [00:11<00:15, 4446.06it/s]
43%|████▎ | 50984/118287 [00:11<00:16, 4113.26it/s]
37%|███▋ | 43498/118287 [00:11<00:20, 3729.78it/s]
47%|████▋ | 55014/118287 [00:12<00:13, 4639.29it/s]
37%|███▋ | 43845/118287 [00:11<00:19, 3833.41it/s]
47%|████▋ | 55815/118287 [00:11<00:13, 4621.28it/s]
22%|██▏ | 25565/118287 [00:07<00:24, 3740.97it/s]
44%|████▍ | 52112/118287 [00:12<00:15, 4224.84it/s]
43%|████▎ | 51301/118287 [00:12<00:14, 4492.83it/s]
43%|████▎ | 51408/118287 [00:11<00:16, 4146.89it/s]
37%|███▋ | 43872/118287 [00:11<00:20, 3703.40it/s]
47%|████▋ | 55479/118287 [00:12<00:13, 4600.20it/s]
37%|███▋ | 44237/118287 [00:11<00:19, 3858.89it/s]
48%|████▊ | 56278/118287 [00:12<00:13, 4544.21it/s]
22%|██▏ | 25946/118287 [00:07<00:24, 3759.80it/s]
44%|████▍ | 52536/118287 [00:12<00:15, 4218.26it/s]
44%|████▍ | 51751/118287 [00:12<00:14, 4454.90it/s]
44%|████▍ | 51824/118287 [00:12<00:16, 4102.14it/s]
37%|███▋ | 44243/118287 [00:11<00:20, 3700.43it/s]
47%|████▋ | 55940/118287 [00:12<00:13, 4557.24it/s]
38%|███▊ | 44624/118287 [00:11<00:19, 3818.86it/s]
48%|████▊ | 56737/118287 [00:12<00:13, 4557.05it/s]
22%|██▏ | 26338/118287 [00:07<00:24, 3803.62it/s]
45%|████▍ | 52959/118287 [00:12<00:15, 4096.96it/s]
44%|████▍ | 52235/118287 [00:12<00:16, 4070.56it/s]
44%|████▍ | 52197/118287 [00:12<00:15, 4300.47it/s]
38%|███▊ | 44614/118287 [00:11<00:20, 3667.41it/s]
48%|████▊ | 56397/118287 [00:12<00:13, 4500.64it/s]
38%|███▊ | 45045/118287 [00:11<00:18, 3926.47it/s]
48%|████▊ | 57239/118287 [00:12<00:13, 4685.44it/s]
23%|██▎ | 26734/118287 [00:07<00:23, 3846.04it/s]
45%|████▌ | 53394/118287 [00:12<00:15, 4168.26it/s]
45%|████▍ | 52645/118287 [00:12<00:16, 4073.77it/s]
44%|████▍ | 52629/118287 [00:12<00:15, 4250.88it/s]
38%|███▊ | 45003/118287 [00:11<00:19, 3728.27it/s]
48%|████▊ | 56872/118287 [00:12<00:13, 4571.93it/s]
38%|███▊ | 45439/118287 [00:11<00:18, 3868.07it/s]
49%|████▉ | 57735/118287 [00:12<00:12, 4760.81it/s]
23%|██▎ | 27119/118287 [00:07<00:23, 3826.22it/s]
46%|████▌ | 53855/118287 [00:12<00:15, 4291.16it/s]
45%|████▍ | 53053/118287 [00:12<00:16, 3965.56it/s]
45%|████▍ | 53056/118287 [00:12<00:15, 4104.65it/s]
38%|███▊ | 45377/118287 [00:11<00:19, 3708.50it/s]
48%|████▊ | 57361/118287 [00:12<00:13, 4661.18it/s]
39%|███▊ | 45832/118287 [00:11<00:18, 3886.11it/s]
49%|████▉ | 58213/118287 [00:12<00:12, 4709.98it/s]
23%|██▎ | 27516/118287 [00:07<00:23, 3867.96it/s]
46%|████▌ | 54286/118287 [00:12<00:14, 4282.57it/s]
45%|████▌ | 53478/118287 [00:12<00:16, 4040.94it/s]
45%|████▌ | 53474/118287 [00:12<00:15, 4126.91it/s]
49%|████▉ | 57847/118287 [00:12<00:12, 4718.09it/s]
39%|███▊ | 45749/118287 [00:11<00:20, 3622.69it/s]
39%|███▉ | 46244/118287 [00:11<00:18, 3950.52it/s]
50%|████▉ | 58685/118287 [00:12<00:12, 4684.86it/s]
24%|██▎ | 27904/118287 [00:07<00:23, 3806.52it/s]
46%|████▋ | 54716/118287 [00:13<00:14, 4280.24it/s]
46%|████▌ | 53935/118287 [00:12<00:15, 4185.34it/s]
46%|████▌ | 53908/118287 [00:12<00:15, 4188.33it/s]
49%|████▉ | 58320/118287 [00:12<00:12, 4706.13it/s]
39%|███▉ | 46122/118287 [00:11<00:19, 3653.94it/s]
39%|███▉ | 46662/118287 [00:11<00:17, 4016.47it/s]
50%|█████ | 59155/118287 [00:12<00:12, 4689.09it/s]
24%|██▍ | 28286/118287 [00:07<00:23, 3804.45it/s]
47%|████▋ | 55145/118287 [00:13<00:14, 4260.17it/s]
46%|████▌ | 54356/118287 [00:12<00:15, 4159.21it/s]
46%|████▌ | 54328/118287 [00:12<00:15, 4096.94it/s]
39%|███▉ | 46518/118287 [00:12<00:19, 3738.42it/s]
50%|████▉ | 58792/118287 [00:12<00:12, 4605.03it/s]
40%|███▉ | 47065/118287 [00:11<00:17, 3972.16it/s]
50%|█████ | 59625/118287 [00:12<00:12, 4605.32it/s]
24%|██▍ | 28679/118287 [00:08<00:23, 3840.61it/s]
47%|████▋ | 55574/118287 [00:13<00:14, 4268.90it/s]
46%|████▋ | 54784/118287 [00:12<00:15, 4194.68it/s]
46%|████▋ | 54739/118287 [00:12<00:15, 4093.73it/s]
40%|███▉ | 46893/118287 [00:12<00:19, 3713.07it/s]
50%|█████ | 59263/118287 [00:12<00:12, 4633.35it/s]
40%|████ | 47463/118287 [00:12<00:17, 3941.04it/s]
51%|█████ | 60087/118287 [00:12<00:12, 4498.74it/s]
25%|██▍ | 29064/118287 [00:08<00:23, 3840.09it/s]
47%|████▋ | 56002/118287 [00:13<00:14, 4213.97it/s]
47%|████▋ | 55215/118287 [00:12<00:14, 4224.75it/s]
47%|████▋ | 55150/118287 [00:12<00:15, 4074.61it/s]
50%|█████ | 59727/118287 [00:13<00:12, 4585.53it/s]
40%|███▉ | 47265/118287 [00:12<00:19, 3643.89it/s]
40%|████ | 47858/118287 [00:12<00:17, 3926.32it/s]
25%|██▍ | 29451/118287 [00:08<00:23, 3848.65it/s]
51%|█████ | 60538/118287 [00:12<00:13, 4410.30it/s]
48%|████▊ | 56424/118287 [00:13<00:14, 4144.46it/s]
47%|████▋ | 55639/118287 [00:12<00:15, 4146.57it/s]
47%|████▋ | 55562/118287 [00:13<00:15, 4084.73it/s]
40%|████ | 47637/118287 [00:12<00:19, 3662.29it/s]
51%|█████ | 60187/118287 [00:13<00:12, 4511.28it/s]
41%|████ | 48251/118287 [00:12<00:17, 3923.51it/s]
25%|██▌ | 29837/118287 [00:08<00:22, 3848.74it/s]
52%|█████▏ | 60993/118287 [00:13<00:12, 4448.18it/s]
48%|████▊ | 56861/118287 [00:13<00:14, 4209.34it/s]
47%|████▋ | 56056/118287 [00:13<00:14, 4151.69it/s]
47%|████▋ | 55971/118287 [00:13<00:15, 4032.01it/s]
41%|████ | 48662/118287 [00:12<00:17, 3975.17it/s]
41%|████ | 48004/118287 [00:12<00:19, 3587.08it/s]
51%|█████▏ | 60639/118287 [00:13<00:13, 4387.37it/s]
52%|█████▏ | 61439/118287 [00:13<00:12, 4378.55it/s]
26%|██▌ | 30222/118287 [00:08<00:23, 3749.80it/s]
48%|████▊ | 57317/118287 [00:13<00:14, 4308.68it/s]
48%|████▊ | 56472/118287 [00:13<00:14, 4127.68it/s]
48%|████▊ | 56375/118287 [00:13<00:15, 3977.37it/s]
41%|████▏ | 49068/118287 [00:12<00:17, 3995.67it/s]
41%|████ | 48372/118287 [00:12<00:19, 3613.73it/s]
52%|█████▏ | 61091/118287 [00:13<00:12, 4424.97it/s]
52%|█████▏ | 61922/118287 [00:13<00:12, 4504.53it/s]
26%|██▌ | 30648/118287 [00:08<00:22, 3885.71it/s]
49%|████▉ | 57757/118287 [00:13<00:13, 4334.21it/s]
48%|████▊ | 56907/118287 [00:13<00:14, 4190.68it/s]
48%|████▊ | 56804/118287 [00:13<00:15, 4062.22it/s]
41%|████ | 48761/118287 [00:12<00:18, 3692.30it/s]
42%|████▏ | 49468/118287 [00:12<00:17, 3902.50it/s]
52%|█████▏ | 61535/118287 [00:13<00:12, 4416.43it/s]
26%|██▌ | 31047/118287 [00:08<00:22, 3911.88it/s]
53%|█████▎ | 62374/118287 [00:13<00:12, 4437.78it/s]
49%|████▉ | 58192/118287 [00:13<00:14, 4290.07it/s]
48%|████▊ | 57353/118287 [00:13<00:14, 4266.31it/s]
48%|████▊ | 57252/118287 [00:13<00:14, 4175.88it/s]
42%|████▏ | 49134/118287 [00:12<00:18, 3703.49it/s]
52%|█████▏ | 62019/118287 [00:13<00:12, 4533.91it/s]
42%|████▏ | 49859/118287 [00:12<00:17, 3870.11it/s]
27%|██▋ | 31446/118287 [00:08<00:22, 3933.66it/s]
53%|█████▎ | 62850/118287 [00:13<00:12, 4528.32it/s]
50%|████▉ | 58628/118287 [00:13<00:13, 4308.07it/s]
49%|████▉ | 57804/118287 [00:13<00:13, 4331.91it/s]
49%|████▉ | 57697/118287 [00:13<00:14, 4252.45it/s]
42%|████▏ | 50247/118287 [00:12<00:17, 3872.91it/s]
42%|████▏ | 49505/118287 [00:12<00:19, 3589.23it/s]
53%|█████▎ | 62474/118287 [00:13<00:12, 4424.60it/s]
54%|█████▎ | 63318/118287 [00:13<00:12, 4569.03it/s]
27%|██▋ | 31841/118287 [00:08<00:22, 3880.62it/s]
50%|████▉ | 59060/118287 [00:14<00:13, 4262.75it/s]
49%|████▉ | 58238/118287 [00:13<00:13, 4306.53it/s]
49%|████▉ | 58124/118287 [00:13<00:14, 4199.51it/s]
43%|████▎ | 50638/118287 [00:12<00:17, 3880.10it/s]
42%|████▏ | 49873/118287 [00:12<00:18, 3611.38it/s]
53%|█████▎ | 62960/118287 [00:13<00:12, 4545.96it/s]
54%|█████▍ | 63776/118287 [00:13<00:12, 4539.51it/s]
27%|██▋ | 32230/118287 [00:08<00:22, 3846.25it/s]
50%|█████ | 59487/118287 [00:14<00:13, 4201.76it/s]
50%|████▉ | 58670/118287 [00:13<00:13, 4297.18it/s]
50%|████▉ | 58559/118287 [00:13<00:14, 4243.05it/s]
43%|████▎ | 51041/118287 [00:12<00:17, 3923.28it/s]
42%|████▏ | 50250/118287 [00:13<00:18, 3656.13it/s]
54%|█████▎ | 63417/118287 [00:13<00:12, 4405.67it/s]
54%|█████▍ | 64232/118287 [00:13<00:11, 4544.75it/s]
28%|██▊ | 32629/118287 [00:09<00:22, 3887.92it/s]
51%|█████ | 59908/118287 [00:14<00:13, 4200.78it/s]
50%|████▉ | 59101/118287 [00:13<00:13, 4275.60it/s]
50%|████▉ | 58985/118287 [00:13<00:14, 4087.47it/s]
44%|████▎ | 51464/118287 [00:13<00:16, 4004.60it/s]
43%|████▎ | 50621/118287 [00:13<00:18, 3669.12it/s]
54%|█████▍ | 63860/118287 [00:13<00:12, 4404.33it/s]
55%|█████▍ | 64721/118287 [00:13<00:11, 4642.21it/s]
28%|██▊ | 33019/118287 [00:09<00:21, 3883.09it/s]
51%|█████ | 60329/118287 [00:14<00:13, 4145.60it/s]
50%|█████ | 59529/118287 [00:13<00:13, 4226.95it/s]
50%|█████ | 59398/118287 [00:14<00:14, 4097.68it/s]
43%|████▎ | 51008/118287 [00:13<00:18, 3721.95it/s]
44%|████▍ | 51866/118287 [00:13<00:16, 3932.67it/s]
54%|█████▍ | 64325/118287 [00:14<00:12, 4474.70it/s]
28%|██▊ | 33434/118287 [00:09<00:21, 3954.89it/s]
55%|█████▌ | 65187/118287 [00:13<00:11, 4612.18it/s]
51%|█████▏ | 60744/118287 [00:14<00:14, 4107.71it/s]
51%|█████ | 59953/118287 [00:14<00:14, 4166.39it/s]
51%|█████ | 59810/118287 [00:14<00:14, 4064.97it/s]
43%|████▎ | 51406/118287 [00:13<00:17, 3790.60it/s]
44%|████▍ | 52269/118287 [00:13<00:16, 3958.06it/s]
55%|█████▍ | 64788/118287 [00:14<00:11, 4519.67it/s]
29%|██▊ | 33831/118287 [00:09<00:21, 3959.21it/s]
55%|█████▌ | 65649/118287 [00:14<00:11, 4497.52it/s]
52%|█████▏ | 61156/118287 [00:14<00:14, 4053.40it/s]
51%|█████ | 60371/118287 [00:14<00:14, 4091.94it/s]
51%|█████ | 60218/118287 [00:14<00:14, 4028.19it/s]
44%|████▍ | 51793/118287 [00:13<00:17, 3806.34it/s]
45%|████▍ | 52666/118287 [00:13<00:16, 3930.19it/s]
55%|█████▌ | 65242/118287 [00:14<00:11, 4501.08it/s]
29%|██▉ | 34246/118287 [00:09<00:20, 4013.09it/s]
56%|█████▌ | 66100/118287 [00:14<00:12, 4334.65it/s]
52%|█████▏ | 61578/118287 [00:14<00:13, 4101.23it/s]
51%|█████▏ | 60787/118287 [00:14<00:13, 4108.85it/s]
51%|█████ | 60622/118287 [00:14<00:14, 3887.73it/s]
44%|████▍ | 52175/118287 [00:13<00:17, 3734.94it/s]
45%|████▍ | 53060/118287 [00:13<00:16, 3857.51it/s]
56%|█████▌ | 65693/118287 [00:14<00:11, 4393.31it/s]
29%|██▉ | 34697/118287 [00:09<00:20, 4147.04it/s]
56%|█████▌ | 66536/118287 [00:14<00:12, 4264.39it/s]
52%|█████▏ | 62023/118287 [00:14<00:13, 4199.85it/s]
52%|█████▏ | 61199/118287 [00:14<00:14, 4036.29it/s]
52%|█████▏ | 61034/118287 [00:14<00:14, 3954.01it/s]
44%|████▍ | 52565/118287 [00:13<00:17, 3775.29it/s]
45%|████▌ | 53473/118287 [00:13<00:16, 3929.58it/s]
56%|█████▌ | 66134/118287 [00:14<00:12, 4306.53it/s]
30%|██▉ | 35114/118287 [00:09<00:20, 3978.28it/s]
57%|█████▋ | 66978/118287 [00:14<00:12, 4274.58it/s]
53%|█████▎ | 62444/118287 [00:14<00:13, 4092.46it/s]
52%|█████▏ | 61621/118287 [00:14<00:13, 4087.93it/s]
46%|████▌ | 53918/118287 [00:13<00:15, 4071.57it/s]
52%|█████▏ | 61431/118287 [00:14<00:14, 3862.02it/s]
45%|████▍ | 52944/118287 [00:13<00:17, 3685.30it/s]
56%|█████▋ | 66582/118287 [00:14<00:11, 4354.61it/s]
30%|███ | 35524/118287 [00:09<00:20, 4011.75it/s]
57%|█████▋ | 67407/118287 [00:14<00:12, 4216.48it/s]
53%|█████▎ | 62872/118287 [00:14<00:13, 4143.65it/s]
52%|█████▏ | 62057/118287 [00:14<00:13, 4154.49it/s]
52%|█████▏ | 61848/118287 [00:14<00:14, 3948.53it/s]
46%|████▌ | 54327/118287 [00:13<00:15, 4053.61it/s]
45%|████▌ | 53332/118287 [00:13<00:17, 3734.42it/s]
57%|█████▋ | 67044/118287 [00:14<00:11, 4429.15it/s]
30%|███ | 35946/118287 [00:09<00:20, 4071.81it/s]
57%|█████▋ | 67830/118287 [00:14<00:12, 4142.44it/s]
54%|█████▎ | 63302/118287 [00:15<00:13, 4187.10it/s]
53%|█████▎ | 62474/118287 [00:14<00:14, 3971.75it/s]
53%|█████▎ | 62248/118287 [00:14<00:14, 3958.84it/s]
46%|████▋ | 54743/118287 [00:13<00:15, 4081.64it/s]
45%|████▌ | 53730/118287 [00:13<00:16, 3798.59it/s]
57%|█████▋ | 67488/118287 [00:14<00:11, 4376.26it/s]
31%|███ | 36355/118287 [00:10<00:20, 4021.63it/s]
54%|█████▍ | 63722/118287 [00:15<00:13, 4155.77it/s]
58%|█████▊ | 68246/118287 [00:14<00:12, 3961.54it/s]
53%|█████▎ | 62886/118287 [00:14<00:13, 4014.68it/s]
46%|████▌ | 54149/118287 [00:14<00:16, 3904.36it/s]
53%|█████▎ | 62645/118287 [00:14<00:14, 3916.82it/s]
47%|████▋ | 55153/118287 [00:13<00:15, 4051.03it/s]
57%|█████▋ | 67939/118287 [00:14<00:11, 4414.41it/s]
31%|███ | 36759/118287 [00:10<00:20, 3952.13it/s]
54%|█████▍ | 64139/118287 [00:15<00:13, 4114.99it/s]
58%|█████▊ | 68645/118287 [00:14<00:12, 3904.72it/s]
54%|█████▎ | 63290/118287 [00:14<00:13, 3992.23it/s]
46%|████▌ | 54541/118287 [00:14<00:16, 3880.56it/s]
47%|████▋ | 55563/118287 [00:14<00:15, 4060.29it/s]
53%|█████▎ | 63058/118287 [00:14<00:13, 3970.82it/s]
58%|█████▊ | 68382/118287 [00:15<00:11, 4356.15it/s]
31%|███▏ | 37156/118287 [00:10<00:20, 3898.63it/s]
55%|█████▍ | 64617/118287 [00:15<00:12, 4286.85it/s]
58%|█████▊ | 69056/118287 [00:14<00:12, 3949.93it/s]
54%|█████▍ | 63691/118287 [00:14<00:13, 3929.00it/s]
46%|████▋ | 54930/118287 [00:14<00:16, 3872.46it/s]
54%|█████▎ | 63456/118287 [00:15<00:13, 3948.67it/s]
47%|████▋ | 55970/118287 [00:14<00:15, 4005.52it/s]
58%|█████▊ | 68819/118287 [00:15<00:11, 4328.76it/s]
32%|███▏ | 37547/118287 [00:10<00:20, 3900.92it/s]
55%|█████▍ | 65048/118287 [00:15<00:12, 4292.73it/s]
59%|█████▊ | 69453/118287 [00:15<00:12, 3859.01it/s]
54%|█████▍ | 64085/118287 [00:15<00:14, 3839.24it/s]
47%|████▋ | 55318/118287 [00:14<00:16, 3872.00it/s]
54%|█████▍ | 63852/118287 [00:15<00:13, 3915.29it/s]
48%|████▊ | 56372/118287 [00:14<00:15, 3949.27it/s]
59%|█████▊ | 69260/118287 [00:15<00:11, 4347.18it/s]
32%|███▏ | 37938/118287 [00:10<00:20, 3839.86it/s]
55%|█████▌ | 65479/118287 [00:15<00:12, 4227.71it/s]
59%|█████▉ | 69868/118287 [00:15<00:12, 3940.61it/s]
55%|█████▍ | 64519/118287 [00:15<00:13, 3975.98it/s]
47%|████▋ | 55706/118287 [00:14<00:16, 3834.55it/s]
54%|█████▍ | 64273/118287 [00:15<00:13, 3998.54it/s]
48%|████▊ | 56784/118287 [00:14<00:15, 3996.90it/s]
59%|█████▉ | 69711/118287 [00:15<00:11, 4394.16it/s]
32%|███▏ | 38326/118287 [00:10<00:20, 3850.20it/s]
56%|█████▌ | 65904/118287 [00:15<00:12, 4122.59it/s]
59%|█████▉ | 70321/118287 [00:15<00:11, 4097.67it/s]
55%|█████▍ | 64946/118287 [00:15<00:13, 4059.66it/s]
55%|█████▍ | 64683/118287 [00:15<00:13, 4026.84it/s]
47%|████▋ | 56090/118287 [00:14<00:16, 3797.27it/s]
48%|████▊ | 57207/118287 [00:14<00:15, 4060.31it/s]
59%|█████▉ | 70191/118287 [00:15<00:10, 4507.03it/s]
33%|███▎ | 38724/118287 [00:10<00:20, 3886.07it/s]
56%|█████▌ | 66318/118287 [00:15<00:12, 4071.63it/s]
60%|█████▉ | 70736/118287 [00:15<00:11, 4112.32it/s]
55%|█████▌ | 65354/118287 [00:15<00:13, 4042.16it/s]
48%|████▊ | 56471/118287 [00:14<00:16, 3800.64it/s]
55%|█████▌ | 65087/118287 [00:15<00:13, 3983.34it/s]
49%|████▊ | 57618/118287 [00:14<00:14, 4074.69it/s]
60%|█████▉ | 70671/118287 [00:15<00:10, 4590.38it/s]
33%|███▎ | 39114/118287 [00:10<00:20, 3882.44it/s]
56%|█████▋ | 66741/118287 [00:15<00:12, 4114.38it/s]
60%|██████ | 71159/118287 [00:15<00:11, 4141.11it/s]
56%|█████▌ | 65760/118287 [00:15<00:13, 3981.12it/s]
48%|████▊ | 56869/118287 [00:14<00:15, 3851.89it/s]
49%|████▉ | 58026/118287 [00:14<00:14, 4057.89it/s]
55%|█████▌ | 65486/118287 [00:15<00:13, 3919.33it/s]
60%|██████ | 71150/118287 [00:15<00:10, 4646.71it/s]
33%|███▎ | 39514/118287 [00:10<00:20, 3916.61it/s]
57%|█████▋ | 67193/118287 [00:15<00:12, 4227.15it/s]
61%|██████ | 71575/118287 [00:15<00:11, 4000.97it/s]
48%|████▊ | 57277/118287 [00:14<00:15, 3916.85it/s]
56%|█████▌ | 66160/118287 [00:15<00:13, 3896.27it/s]
49%|████▉ | 58433/118287 [00:14<00:14, 4039.02it/s]
56%|█████▌ | 65879/118287 [00:15<00:13, 3850.73it/s]
61%|██████ | 71616/118287 [00:15<00:10, 4498.24it/s]
34%|███▎ | 39917/118287 [00:10<00:19, 3948.81it/s]
57%|█████▋ | 67618/118287 [00:16<00:12, 4081.51it/s]
61%|██████ | 71993/118287 [00:15<00:11, 4052.06it/s]
49%|████▉ | 57696/118287 [00:15<00:15, 3992.02it/s]
56%|█████▋ | 66554/118287 [00:15<00:13, 3908.13it/s]
50%|████▉ | 58838/118287 [00:14<00:15, 3908.95it/s]
56%|█████▌ | 66265/118287 [00:15<00:13, 3795.80it/s]
61%|██████ | 72084/118287 [00:15<00:10, 4550.24it/s]
34%|███▍ | 40313/118287 [00:11<00:20, 3855.64it/s]
58%|█████▊ | 68029/118287 [00:16<00:12, 4026.91it/s]
61%|██████ | 72400/118287 [00:15<00:11, 4004.44it/s]
57%|█████▋ | 66959/118287 [00:15<00:12, 3948.85it/s]
49%|████▉ | 58096/118287 [00:15<00:15, 3939.90it/s]
50%|█████ | 59239/118287 [00:15<00:14, 3938.62it/s]
56%|█████▋ | 66666/118287 [00:15<00:13, 3849.41it/s]
61%|██████▏ | 72541/118287 [00:15<00:10, 4518.82it/s]
34%|███▍ | 40702/118287 [00:11<00:20, 3865.84it/s]
62%|██████▏ | 72808/118287 [00:15<00:11, 4026.03it/s]
58%|█████▊ | 68434/118287 [00:16<00:12, 3942.08it/s]
57%|█████▋ | 67361/118287 [00:15<00:12, 3967.68it/s]
49%|████▉ | 58507/118287 [00:15<00:14, 3989.39it/s]
57%|█████▋ | 67082/118287 [00:15<00:13, 3937.29it/s]
50%|█████ | 59634/118287 [00:15<00:15, 3830.23it/s]
62%|██████▏ | 73012/118287 [00:16<00:09, 4573.77it/s]
35%|███▍ | 41118/118287 [00:11<00:19, 3947.22it/s]
62%|██████▏ | 73241/118287 [00:15<00:10, 4111.90it/s]
58%|█████▊ | 68830/118287 [00:16<00:12, 3887.92it/s]
57%|█████▋ | 67759/118287 [00:15<00:12, 3940.55it/s]
50%|████▉ | 58907/118287 [00:15<00:15, 3853.32it/s]
57%|█████▋ | 67477/118287 [00:16<00:13, 3881.85it/s]
62%|██████▏ | 73471/118287 [00:16<00:09, 4564.31it/s]
51%|█████ | 60019/118287 [00:15<00:15, 3718.89it/s]
35%|███▌ | 41517/118287 [00:11<00:19, 3956.16it/s]
62%|██████▏ | 73654/118287 [00:16<00:10, 4080.93it/s]
59%|█████▊ | 69221/118287 [00:16<00:12, 3868.76it/s]
58%|█████▊ | 68154/118287 [00:16<00:12, 3912.44it/s]
50%|█████ | 59313/118287 [00:15<00:15, 3910.50it/s]
57%|█████▋ | 67886/118287 [00:16<00:12, 3941.95it/s]
63%|██████▎ | 73954/118287 [00:16<00:09, 4637.88it/s]
51%|█████ | 60393/118287 [00:15<00:15, 3698.05it/s]
35%|███▌ | 41924/118287 [00:11<00:19, 3989.59it/s]
63%|██████▎ | 74076/118287 [00:16<00:10, 4120.42it/s]
59%|█████▉ | 69609/118287 [00:16<00:12, 3855.45it/s]
58%|█████▊ | 68546/118287 [00:16<00:12, 3860.75it/s]
50%|█████ | 59706/118287 [00:15<00:15, 3857.69it/s]
58%|█████▊ | 68282/118287 [00:16<00:12, 3866.36it/s]
63%|██████▎ | 74419/118287 [00:16<00:09, 4612.92it/s]
51%|█████▏ | 60764/118287 [00:15<00:15, 3696.60it/s]
36%|███▌ | 42324/118287 [00:11<00:19, 3970.08it/s]
63%|██████▎ | 74490/118287 [00:16<00:10, 4115.53it/s]
59%|█████▉ | 70004/118287 [00:16<00:12, 3880.74it/s]
58%|█████▊ | 68945/118287 [00:16<00:12, 3898.45it/s]
51%|█████ | 60093/118287 [00:15<00:15, 3810.26it/s]
58%|█████▊ | 68670/118287 [00:16<00:12, 3855.98it/s]
63%|██████▎ | 74881/118287 [00:16<00:09, 4517.19it/s]
52%|█████▏ | 61135/118287 [00:15<00:15, 3667.30it/s]
36%|███▌ | 42738/118287 [00:11<00:18, 4014.87it/s]
63%|██████▎ | 74903/118287 [00:16<00:10, 4117.24it/s]
60%|█████▉ | 70432/118287 [00:16<00:11, 3988.42it/s]
59%|█████▊ | 69336/118287 [00:16<00:12, 3888.44it/s]
58%|█████▊ | 69071/118287 [00:16<00:12, 3899.39it/s]
51%|█████ | 60475/118287 [00:15<00:15, 3723.31it/s]
64%|██████▎ | 75335/118287 [00:16<00:09, 4520.47it/s]
52%|█████▏ | 61505/118287 [00:15<00:15, 3675.52it/s]
36%|███▋ | 43156/118287 [00:11<00:18, 4062.76it/s]
64%|██████▎ | 75316/118287 [00:16<00:10, 4080.76it/s]
60%|█████▉ | 70838/118287 [00:16<00:11, 4009.02it/s]
59%|█████▉ | 69745/118287 [00:16<00:12, 3946.26it/s]
51%|█████▏ | 60868/118287 [00:15<00:15, 3782.38it/s]
59%|█████▊ | 69462/118287 [00:16<00:12, 3872.11it/s]
52%|█████▏ | 61905/118287 [00:15<00:14, 3763.48it/s]
64%|██████▍ | 75788/118287 [00:16<00:09, 4459.32it/s]
37%|███▋ | 43563/118287 [00:11<00:18, 4046.65it/s]
64%|██████▍ | 75725/118287 [00:16<00:10, 4068.29it/s]
60%|██████ | 71250/118287 [00:17<00:11, 4040.69it/s]
59%|█████▉ | 70170/118287 [00:16<00:11, 4032.13it/s]
59%|█████▉ | 69880/118287 [00:16<00:12, 3958.16it/s]
52%|█████▏ | 61248/118287 [00:15<00:15, 3715.05it/s]
53%|█████▎ | 62283/118287 [00:15<00:14, 3767.30it/s]
64%|██████▍ | 76247/118287 [00:16<00:09, 4493.70it/s]
37%|███▋ | 43968/118287 [00:11<00:18, 4039.04it/s]
64%|██████▍ | 76141/118287 [00:16<00:10, 4093.83it/s]
60%|█████▉ | 70615/118287 [00:16<00:11, 4148.33it/s]
61%|██████ | 71655/118287 [00:17<00:11, 3900.61it/s]
59%|█████▉ | 70331/118287 [00:16<00:11, 4108.11it/s]
52%|█████▏ | 61632/118287 [00:16<00:15, 3750.13it/s]
53%|█████▎ | 62661/118287 [00:15<00:14, 3759.77it/s]
65%|██████▍ | 76697/118287 [00:16<00:09, 4492.40it/s]
38%|███▊ | 44373/118287 [00:12<00:18, 4011.68it/s]
65%|██████▍ | 76551/118287 [00:16<00:10, 4055.04it/s]
60%|██████ | 71037/118287 [00:16<00:11, 4168.33it/s]
61%|██████ | 72063/118287 [00:17<00:11, 3952.67it/s]
60%|█████▉ | 70765/118287 [00:16<00:11, 4169.39it/s]
52%|█████▏ | 62039/118287 [00:16<00:14, 3839.95it/s]
53%|█████▎ | 63058/118287 [00:16<00:14, 3813.77it/s]
65%|██████▌ | 77152/118287 [00:16<00:09, 4508.76it/s]
38%|███▊ | 44802/118287 [00:12<00:17, 4085.95it/s]
65%|██████▌ | 76957/118287 [00:16<00:10, 4035.48it/s]
61%|██████▏ | 72460/118287 [00:17<00:11, 3933.17it/s]
60%|██████ | 71455/118287 [00:16<00:11, 4054.28it/s]
60%|██████ | 71192/118287 [00:16<00:11, 4198.17it/s]
54%|█████▎ | 63440/118287 [00:16<00:14, 3790.09it/s]
66%|██████▌ | 77623/118287 [00:17<00:08, 4561.13it/s]
53%|█████▎ | 62425/118287 [00:16<00:15, 3712.04it/s]
38%|███▊ | 45212/118287 [00:12<00:17, 4080.60it/s]
65%|██████▌ | 77372/118287 [00:16<00:10, 4067.45it/s]
62%|██████▏ | 72881/118287 [00:17<00:11, 4010.96it/s]
61%|██████ | 71862/118287 [00:16<00:11, 4050.08it/s]
54%|█████▍ | 63824/118287 [00:16<00:14, 3804.83it/s]
61%|██████ | 71613/118287 [00:17<00:11, 4055.50it/s]
66%|██████▌ | 78095/118287 [00:17<00:08, 4604.37it/s]
53%|█████▎ | 62834/118287 [00:16<00:14, 3815.92it/s]
39%|███▊ | 45621/118287 [00:12<00:17, 4050.56it/s]
66%|██████▌ | 77800/118287 [00:17<00:09, 4128.02it/s]
62%|██████▏ | 73295/118287 [00:17<00:11, 4041.77it/s]
61%|██████ | 72277/118287 [00:17<00:11, 4076.79it/s]
61%|██████ | 72024/118287 [00:17<00:11, 4070.63it/s]
54%|█████▍ | 64208/118287 [00:16<00:14, 3812.81it/s]
66%|██████▋ | 78567/118287 [00:17<00:08, 4638.27it/s]
53%|█████▎ | 63237/118287 [00:16<00:14, 3876.05it/s]
39%|███▉ | 46054/118287 [00:12<00:17, 4128.68it/s]
66%|██████▌ | 78223/118287 [00:17<00:09, 4157.42it/s]
62%|██████▏ | 73722/118287 [00:17<00:10, 4106.66it/s]
61%|██████▏ | 72686/118287 [00:17<00:11, 4010.76it/s]
55%|█████▍ | 64621/118287 [00:16<00:13, 3900.24it/s]
61%|██████ | 72433/118287 [00:17<00:11, 4071.42it/s]
67%|██████▋ | 79032/118287 [00:17<00:08, 4571.80it/s]
39%|███▉ | 46498/118287 [00:12<00:17, 4206.22it/s]
54%|█████▍ | 63627/118287 [00:16<00:14, 3769.35it/s]
66%|██████▋ | 78640/118287 [00:17<00:09, 4123.41it/s]
63%|██████▎ | 74144/118287 [00:17<00:10, 4140.01it/s]
62%|██████▏ | 73117/118287 [00:17<00:11, 4095.16it/s]
55%|█████▍ | 65018/118287 [00:16<00:13, 3917.65it/s]
62%|██████▏ | 72852/118287 [00:17<00:11, 4094.86it/s]
67%|██████▋ | 79516/118287 [00:17<00:08, 4648.01it/s]
40%|███▉ | 46924/118287 [00:12<00:16, 4219.69it/s]
54%|█████▍ | 64013/118287 [00:16<00:14, 3796.03it/s]
67%|██████▋ | 79053/118287 [00:17<00:09, 4078.03it/s]
63%|██████▎ | 74559/118287 [00:17<00:10, 4089.98it/s]
62%|██████▏ | 73528/118287 [00:17<00:11, 4008.38it/s]
62%|██████▏ | 73283/118287 [00:17<00:10, 4156.14it/s]
68%|██████▊ | 79982/118287 [00:17<00:08, 4642.71it/s]
55%|█████▌ | 65411/118287 [00:16<00:13, 3815.46it/s]
40%|████ | 47347/118287 [00:12<00:17, 4166.31it/s]
54%|█████▍ | 64425/118287 [00:16<00:13, 3882.93it/s]
67%|██████▋ | 79480/118287 [00:17<00:09, 4132.31it/s]
63%|██████▎ | 74974/118287 [00:17<00:10, 4104.02it/s]
63%|██████▎ | 73970/118287 [00:17<00:10, 4121.04it/s]
62%|██████▏ | 73700/118287 [00:17<00:10, 4134.34it/s]
68%|██████▊ | 80447/118287 [00:17<00:08, 4582.46it/s]
56%|█████▌ | 65794/118287 [00:16<00:13, 3775.17it/s]
40%|████ | 47771/118287 [00:12<00:16, 4185.11it/s]
55%|█████▍ | 64825/118287 [00:16<00:13, 3910.33it/s]
68%|██████▊ | 79894/118287 [00:17<00:09, 4120.77it/s]
64%|██████▎ | 75385/118287 [00:18<00:10, 4085.90it/s]
63%|██████▎ | 74384/118287 [00:17<00:10, 4047.52it/s]
63%|██████▎ | 74122/118287 [00:17<00:10, 4150.35it/s]
68%|██████▊ | 80906/118287 [00:17<00:08, 4535.30it/s]
55%|█████▌ | 65218/118287 [00:16<00:13, 3881.11it/s]
41%|████ | 48190/118287 [00:12<00:16, 4133.90it/s]
56%|█████▌ | 66173/118287 [00:16<00:14, 3695.03it/s]
68%|██████▊ | 80307/118287 [00:17<00:09, 4109.95it/s]
64%|██████▍ | 75794/118287 [00:18<00:10, 4037.53it/s]
63%|██████▎ | 74807/118287 [00:17<00:10, 4099.29it/s]
63%|██████▎ | 74538/118287 [00:17<00:10, 4127.09it/s]
69%|██████▉ | 81360/118287 [00:17<00:08, 4497.92it/s]
41%|████ | 48631/118287 [00:13<00:16, 4210.94it/s]
56%|█████▋ | 66556/118287 [00:16<00:13, 3733.12it/s]
55%|█████▌ | 65607/118287 [00:17<00:13, 3791.79it/s]
68%|██████▊ | 80719/118287 [00:17<00:09, 4055.95it/s]
64%|██████▍ | 76219/118287 [00:18<00:10, 4098.91it/s]
64%|██████▎ | 75219/118287 [00:17<00:10, 4057.03it/s]
63%|██████▎ | 74959/118287 [00:17<00:10, 4151.16it/s]
69%|██████▉ | 81818/118287 [00:17<00:08, 4518.55it/s]
41%|████▏ | 49068/118287 [00:13<00:16, 4249.80it/s]
57%|█████▋ | 66951/118287 [00:17<00:13, 3795.27it/s]
56%|█████▌ | 65988/118287 [00:17<00:14, 3708.15it/s]
69%|██████▊ | 81127/118287 [00:17<00:09, 4063.04it/s]
65%|██████▍ | 76630/118287 [00:18<00:10, 4046.47it/s]
64%|██████▍ | 75626/118287 [00:17<00:10, 4019.03it/s]
64%|██████▎ | 75375/118287 [00:18<00:10, 4100.45it/s]
70%|██████▉ | 82276/118287 [00:18<00:07, 4532.43it/s]
57%|█████▋ | 67347/118287 [00:17<00:13, 3842.79it/s]
42%|████▏ | 49494/118287 [00:13<00:16, 4162.66it/s]
56%|█████▌ | 66360/118287 [00:17<00:14, 3691.54it/s]
69%|██████▉ | 81534/118287 [00:18<00:09, 4036.37it/s]
65%|██████▌ | 77036/118287 [00:18<00:10, 4022.35it/s]
64%|██████▍ | 76029/118287 [00:18<00:10, 4007.60it/s]
64%|██████▍ | 75786/118287 [00:18<00:10, 4068.56it/s]
70%|██████▉ | 82754/118287 [00:18<00:07, 4600.63it/s]
42%|████▏ | 49912/118287 [00:13<00:16, 4164.95it/s]
57%|█████▋ | 67732/118287 [00:17<00:13, 3759.12it/s]
56%|█████▋ | 66737/118287 [00:17<00:13, 3713.06it/s]
69%|██████▉ | 81942/118287 [00:18<00:08, 4047.49it/s]
65%|██████▌ | 77460/118287 [00:18<00:10, 4081.86it/s]
65%|██████▍ | 76431/118287 [00:18<00:10, 4000.20it/s]
64%|██████▍ | 76209/118287 [00:18<00:10, 4115.33it/s]
70%|███████ | 83257/118287 [00:18<00:07, 4719.68it/s]
43%|████▎ | 50349/118287 [00:13<00:16, 4223.83it/s]
58%|█████▊ | 68113/118287 [00:17<00:13, 3773.23it/s]
57%|█████▋ | 67152/118287 [00:17<00:13, 3833.88it/s]
70%|██████▉ | 82376/118287 [00:18<00:08, 4127.95it/s]
66%|██████▌ | 77885/118287 [00:18<00:09, 4127.44it/s]
65%|██████▍ | 76832/118287 [00:18<00:10, 3967.06it/s]
65%|██████▍ | 76621/118287 [00:18<00:10, 4093.54it/s]
71%|███████ | 83731/118287 [00:18<00:07, 4661.98it/s]
43%|████▎ | 50772/118287 [00:13<00:16, 4176.06it/s]
58%|█████▊ | 68491/118287 [00:17<00:13, 3691.19it/s]
57%|█████▋ | 67537/118287 [00:17<00:13, 3709.10it/s]
70%|███████ | 82812/118287 [00:18<00:08, 4194.90it/s]
66%|██████▌ | 78318/118287 [00:18<00:09, 4185.65it/s]
65%|██████▌ | 77270/118287 [00:18<00:10, 4078.68it/s]
65%|██████▌ | 77031/118287 [00:18<00:10, 4069.84it/s]
71%|███████ | 84226/118287 [00:18<00:07, 4744.35it/s]
43%|████▎ | 51237/118287 [00:13<00:15, 4306.61it/s]
58%|█████▊ | 68879/118287 [00:17<00:13, 3743.64it/s]
57%|█████▋ | 67933/118287 [00:17<00:13, 3776.75it/s]
70%|███████ | 83260/118287 [00:18<00:08, 4275.26it/s]
67%|██████▋ | 78738/118287 [00:18<00:09, 4128.94it/s]
66%|██████▌ | 77688/118287 [00:18<00:09, 4106.38it/s]
65%|██████▌ | 77462/118287 [00:18<00:09, 4138.70it/s]
72%|███████▏ | 84702/118287 [00:18<00:07, 4666.42it/s]
44%|████▎ | 51673/118287 [00:13<00:15, 4321.99it/s]
59%|█████▊ | 69255/118287 [00:17<00:13, 3712.40it/s]
58%|█████▊ | 68313/118287 [00:17<00:13, 3719.83it/s]
71%|███████ | 83689/118287 [00:18<00:08, 4232.72it/s]
67%|██████▋ | 79161/118287 [00:18<00:09, 4154.89it/s]
66%|██████▌ | 78123/118287 [00:18<00:09, 4174.98it/s]
66%|██████▌ | 77893/118287 [00:18<00:09, 4185.38it/s]
72%|███████▏ | 85170/118287 [00:18<00:07, 4632.78it/s]
44%|████▍ | 52107/118287 [00:13<00:15, 4256.26it/s]
59%|█████▉ | 69645/118287 [00:17<00:12, 3765.73it/s]
58%|█████▊ | 68687/118287 [00:17<00:13, 3707.93it/s]
71%|███████ | 84135/118287 [00:18<00:07, 4297.62it/s]
67%|██████▋ | 79584/118287 [00:19<00:09, 4171.07it/s]
66%|██████▋ | 78544/118287 [00:18<00:09, 4184.96it/s]
66%|██████▌ | 78337/118287 [00:18<00:09, 4256.99it/s]
72%|███████▏ | 85650/118287 [00:18<00:06, 4674.57it/s]
44%|████▍ | 52547/118287 [00:13<00:15, 4298.09it/s]
59%|█████▉ | 70056/118287 [00:17<00:12, 3862.48it/s]
58%|█████▊ | 69068/118287 [00:18<00:13, 3736.63it/s]
71%|███████▏ | 84566/118287 [00:18<00:07, 4245.75it/s]
68%|██████▊ | 80002/118287 [00:19<00:09, 4125.09it/s]
67%|██████▋ | 78964/118287 [00:18<00:09, 4124.22it/s]
67%|██████▋ | 78764/118287 [00:18<00:09, 4173.90it/s]
73%|███████▎ | 86119/118287 [00:18<00:06, 4627.05it/s]
60%|█████▉ | 70495/118287 [00:17<00:11, 4004.58it/s]
45%|████▍ | 52978/118287 [00:14<00:15, 4178.78it/s]
59%|█████▊ | 69443/118287 [00:18<00:13, 3691.22it/s]
72%|███████▏ | 84992/118287 [00:18<00:07, 4237.96it/s]
68%|██████▊ | 80415/118287 [00:19<00:09, 4073.64it/s]
67%|██████▋ | 79409/118287 [00:18<00:09, 4213.74it/s]
67%|██████▋ | 79190/118287 [00:18<00:09, 4199.27it/s]
73%|███████▎ | 86587/118287 [00:18<00:06, 4637.30it/s]
60%|█████▉ | 70898/118287 [00:18<00:11, 3996.19it/s]
45%|████▌ | 53416/118287 [00:14<00:15, 4235.48it/s]
59%|█████▉ | 69828/118287 [00:18<00:12, 3736.49it/s]
72%|███████▏ | 85417/118287 [00:18<00:07, 4237.91it/s]
68%|██████▊ | 80823/118287 [00:19<00:09, 4023.45it/s]
67%|██████▋ | 79840/118287 [00:18<00:09, 4238.31it/s]
67%|██████▋ | 79620/118287 [00:19<00:09, 4228.75it/s]
60%|██████ | 71300/118287 [00:18<00:11, 3963.18it/s]
74%|███████▎ | 87052/118287 [00:19<00:06, 4504.90it/s]
46%|████▌ | 53878/118287 [00:14<00:14, 4343.37it/s]
59%|█████▉ | 70259/118287 [00:18<00:12, 3891.32it/s]
73%|███████▎ | 85842/118287 [00:19<00:07, 4234.99it/s]
69%|██████▊ | 81226/118287 [00:19<00:09, 4019.58it/s]
68%|██████▊ | 80266/118287 [00:19<00:08, 4242.98it/s]
68%|██████▊ | 80048/118287 [00:19<00:09, 4242.62it/s]
61%|██████ | 71698/118287 [00:18<00:11, 3934.93it/s]
46%|████▌ | 54317/118287 [00:14<00:14, 4356.47it/s]
74%|███████▍ | 87504/118287 [00:19<00:06, 4468.17it/s]
60%|█████▉ | 70664/118287 [00:18<00:12, 3935.69it/s]
73%|███████▎ | 86266/118287 [00:19<00:07, 4229.45it/s]
69%|██████▉ | 81629/118287 [00:19<00:09, 4010.70it/s]
68%|██████▊ | 80691/118287 [00:19<00:09, 4108.92it/s]
68%|██████▊ | 80473/118287 [00:19<00:09, 4115.06it/s]
61%|██████ | 72107/118287 [00:18<00:11, 3979.31it/s]
46%|████▋ | 54759/118287 [00:14<00:14, 4368.27it/s]
74%|███████▍ | 87967/118287 [00:19<00:06, 4511.78it/s]
60%|██████ | 71074/118287 [00:18<00:11, 3983.28it/s]
73%|███████▎ | 86690/118287 [00:19<00:07, 4195.66it/s]
69%|██████▉ | 82048/118287 [00:19<00:08, 4060.27it/s]
69%|██████▊ | 81106/118287 [00:19<00:09, 4118.83it/s]
68%|██████▊ | 80886/118287 [00:19<00:09, 4081.57it/s]
47%|████▋ | 55197/118287 [00:14<00:14, 4369.74it/s]
75%|███████▍ | 88438/118287 [00:19<00:06, 4565.20it/s]
61%|██████▏ | 72506/118287 [00:18<00:11, 3910.33it/s]
60%|██████ | 71474/118287 [00:18<00:12, 3887.99it/s]
74%|███████▎ | 87110/118287 [00:19<00:07, 4110.56it/s]
70%|██████▉ | 82489/118287 [00:19<00:08, 4158.26it/s]
69%|██████▉ | 81523/118287 [00:19<00:08, 4133.73it/s]
69%|██████▊ | 81295/118287 [00:19<00:09, 4081.61it/s]
75%|███████▌ | 88896/118287 [00:19<00:06, 4557.39it/s]
47%|████▋ | 55635/118287 [00:14<00:14, 4329.21it/s]
62%|██████▏ | 72922/118287 [00:18<00:11, 3981.92it/s]
61%|██████ | 71868/118287 [00:18<00:11, 3902.45it/s]
74%|███████▍ | 87522/118287 [00:19<00:07, 4056.84it/s]
70%|███████ | 82936/118287 [00:19<00:08, 4245.21it/s]
69%|██████▉ | 81937/118287 [00:19<00:08, 4086.88it/s]
69%|██████▉ | 81704/118287 [00:19<00:09, 4055.70it/s]
76%|███████▌ | 89377/118287 [00:19<00:06, 4629.88it/s]
62%|██████▏ | 73331/118287 [00:18<00:11, 4009.98it/s]
47%|████▋ | 56069/118287 [00:14<00:14, 4244.95it/s]
61%|██████ | 72268/118287 [00:18<00:11, 3928.17it/s]
74%|███████▍ | 87950/118287 [00:19<00:07, 4115.67it/s]
71%|███████ | 83400/118287 [00:19<00:08, 4356.04it/s]
70%|██████▉ | 82371/118287 [00:19<00:08, 4151.56it/s]
69%|██████▉ | 82116/118287 [00:19<00:08, 4074.30it/s]
76%|███████▌ | 89841/118287 [00:19<00:06, 4627.27it/s]
62%|██████▏ | 73752/118287 [00:18<00:10, 4063.82it/s]
48%|████▊ | 56495/118287 [00:14<00:14, 4188.68it/s]
61%|██████▏ | 72662/118287 [00:18<00:11, 3879.65it/s]
75%|███████▍ | 88363/118287 [00:19<00:07, 4111.43it/s]
71%|███████ | 83838/118287 [00:20<00:07, 4308.83it/s]
70%|███████ | 82811/118287 [00:19<00:08, 4213.80it/s]
70%|██████▉ | 82537/118287 [00:19<00:08, 4112.52it/s]
76%|███████▋ | 90313/118287 [00:19<00:06, 4653.89it/s]
63%|██████▎ | 74167/118287 [00:18<00:10, 4088.96it/s]
48%|████▊ | 56921/118287 [00:15<00:14, 4208.90it/s]
62%|██████▏ | 73072/118287 [00:19<00:11, 3940.71it/s]
75%|███████▌ | 88775/118287 [00:19<00:07, 4092.17it/s]
71%|███████ | 84270/118287 [00:20<00:07, 4263.53it/s]
70%|███████ | 83266/118287 [00:19<00:08, 4307.27it/s]
70%|███████ | 82980/118287 [00:19<00:08, 4200.09it/s]
77%|███████▋ | 90779/118287 [00:19<00:05, 4606.81it/s]
63%|██████▎ | 74577/118287 [00:19<00:10, 4029.38it/s]
48%|████▊ | 57349/118287 [00:15<00:14, 4220.11it/s]
62%|██████▏ | 73467/118287 [00:19<00:11, 3893.71it/s]
75%|███████▌ | 89191/118287 [00:19<00:07, 4111.86it/s]
72%|███████▏ | 84698/118287 [00:20<00:07, 4265.15it/s]
71%|███████ | 83698/118287 [00:19<00:08, 4219.72it/s]
71%|███████ | 83431/118287 [00:19<00:08, 4288.47it/s]
77%|███████▋ | 91241/118287 [00:19<00:05, 4598.80it/s]
63%|██████▎ | 74986/118287 [00:19<00:10, 4044.20it/s]
49%|████▉ | 57792/118287 [00:15<00:14, 4273.33it/s]
62%|██████▏ | 73892/118287 [00:19<00:11, 3993.78it/s]
76%|███████▌ | 89663/118287 [00:19<00:06, 4275.21it/s]
72%|███████▏ | 85126/118287 [00:20<00:07, 4240.38it/s]
71%|███████ | 84138/118287 [00:19<00:07, 4272.08it/s]
71%|███████ | 83861/118287 [00:20<00:08, 4275.91it/s]
78%|███████▊ | 91702/118287 [00:20<00:05, 4532.14it/s]
64%|██████▎ | 75391/118287 [00:19<00:10, 4022.90it/s]
49%|████▉ | 58220/118287 [00:15<00:14, 4145.58it/s]
63%|██████▎ | 74293/118287 [00:19<00:11, 3986.85it/s]
76%|███████▌ | 90093/118287 [00:20<00:06, 4169.78it/s]
72%|███████▏ | 85571/118287 [00:20<00:07, 4298.71it/s]
71%|███████▏ | 84290/118287 [00:20<00:07, 4250.91it/s]
71%|███████▏ | 84567/118287 [00:20<00:08, 4203.04it/s]
78%|███████▊ | 92170/118287 [00:20<00:05, 4575.04it/s]
64%|██████▍ | 75794/118287 [00:19<00:10, 3957.25it/s]
50%|████▉ | 58637/118287 [00:15<00:14, 4151.50it/s]
63%|██████▎ | 74693/118287 [00:19<00:11, 3951.43it/s]
77%|███████▋ | 90512/118287 [00:20<00:06, 4133.13it/s]
73%|███████▎ | 86002/118287 [00:20<00:07, 4233.83it/s]
72%|███████▏ | 84716/118287 [00:20<00:07, 4249.99it/s]
72%|███████▏ | 85002/118287 [00:20<00:07, 4240.13it/s]
78%|███████▊ | 92628/118287 [00:20<00:05, 4533.92it/s]
64%|██████▍ | 76209/118287 [00:19<00:10, 4013.12it/s]
63%|██████▎ | 75089/118287 [00:19<00:10, 3953.72it/s]
50%|████▉ | 59053/118287 [00:15<00:14, 4008.36it/s]
77%|███████▋ | 90941/118287 [00:20<00:06, 4173.80it/s]
73%|███████▎ | 86426/118287 [00:20<00:07, 4235.21it/s]
72%|███████▏ | 85142/118287 [00:20<00:07, 4228.64it/s]
72%|███████▏ | 85427/118287 [00:20<00:07, 4215.14it/s]
79%|███████▊ | 93082/118287 [00:20<00:05, 4523.35it/s]
65%|██████▍ | 76611/118287 [00:19<00:10, 3975.79it/s]
50%|█████ | 59456/118287 [00:15<00:14, 3985.44it/s]
64%|██████▍ | 75485/118287 [00:19<00:11, 3861.14it/s]
77%|███████▋ | 91366/118287 [00:20<00:06, 4193.65it/s]
73%|███████▎ | 86850/118287 [00:20<00:07, 4229.81it/s]
72%|███████▏ | 85585/118287 [00:20<00:07, 4285.76it/s]
73%|███████▎ | 85850/118287 [00:20<00:07, 4203.10it/s]
79%|███████▉ | 93550/118287 [00:20<00:05, 4566.99it/s]
65%|██████▌ | 77010/118287 [00:19<00:10, 3965.76it/s]
64%|██████▍ | 75879/118287 [00:19<00:10, 3883.36it/s]
51%|█████ | 59856/118287 [00:15<00:15, 3893.98it/s]
78%|███████▊ | 91787/118287 [00:20<00:06, 4117.21it/s]
74%|███████▍ | 87274/118287 [00:20<00:07, 4208.49it/s]
73%|███████▎ | 86014/118287 [00:20<00:07, 4257.51it/s]
73%|███████▎ | 86278/118287 [00:20<00:07, 4221.53it/s]
79%|███████▉ | 94025/118287 [00:20<00:05, 4618.21it/s]
65%|██████▌ | 77423/118287 [00:19<00:10, 4010.83it/s]
64%|██████▍ | 76277/118287 [00:19<00:10, 3911.84it/s]
51%|█████ | 60247/118287 [00:15<00:15, 3851.22it/s]
78%|███████▊ | 92216/118287 [00:20<00:06, 4167.52it/s]
74%|███████▍ | 87696/118287 [00:20<00:07, 4155.59it/s]
73%|███████▎ | 86441/118287 [00:20<00:07, 4247.21it/s]
73%|███████▎ | 86704/118287 [00:20<00:07, 4229.01it/s]
80%|███████▉ | 94488/118287 [00:20<00:05, 4556.63it/s]
66%|██████▌ | 77840/118287 [00:19<00:09, 4057.01it/s]
65%|██████▍ | 76669/118287 [00:19<00:10, 3904.08it/s]
51%|█████▏ | 60634/118287 [00:15<00:15, 3712.14it/s]
78%|███████▊ | 92634/118287 [00:20<00:06, 4128.42it/s]
75%|███████▍ | 88135/118287 [00:21<00:07, 4223.23it/s]
73%|███████▎ | 86866/118287 [00:20<00:07, 4229.62it/s]
74%|███████▎ | 87128/118287 [00:20<00:07, 4102.01it/s]
80%|████████ | 94968/118287 [00:20<00:05, 4626.98it/s]
66%|██████▌ | 78273/118287 [00:19<00:09, 4134.61it/s]
65%|██████▌ | 77060/118287 [00:20<00:10, 3892.99it/s]
52%|█████▏ | 61017/118287 [00:16<00:15, 3742.92it/s]
79%|███████▊ | 93048/118287 [00:20<00:06, 4123.10it/s]
75%|███████▍ | 88558/118287 [00:21<00:07, 4146.50it/s]
74%|███████▍ | 87290/118287 [00:20<00:07, 4224.28it/s]
74%|███████▍ | 87540/118287 [00:20<00:07, 4080.73it/s]
81%|████████ | 95432/118287 [00:20<00:04, 4585.19it/s]
67%|██████▋ | 78688/118287 [00:20<00:09, 4085.11it/s]
66%|██████▌ | 77480/118287 [00:20<00:10, 3977.49it/s]
52%|█████▏ | 61393/118287 [00:16<00:15, 3647.10it/s]
79%|███████▉ | 93469/118287 [00:20<00:05, 4142.16it/s]
75%|███████▌ | 88984/118287 [00:21<00:07, 4177.97it/s]
74%|███████▍ | 87713/118287 [00:20<00:07, 4189.13it/s]
74%|███████▍ | 87962/118287 [00:20<00:07, 4121.15it/s]
81%|████████ | 95896/118287 [00:21<00:04, 4600.46it/s]
67%|██████▋ | 79104/118287 [00:20<00:09, 4104.78it/s]
66%|██████▌ | 77879/118287 [00:20<00:10, 3978.22it/s]
52%|█████▏ | 61785/118287 [00:16<00:15, 3724.50it/s]
79%|███████▉ | 93889/118287 [00:20<00:05, 4156.71it/s]
76%|███████▌ | 89440/118287 [00:21<00:06, 4283.63it/s]
75%|███████▍ | 88156/118287 [00:21<00:07, 4258.17it/s]
75%|███████▍ | 88392/118287 [00:20<00:07, 4172.69it/s]
81%|████████▏ | 96375/118287 [00:21<00:04, 4655.08it/s]
67%|██████▋ | 79515/118287 [00:20<00:09, 4102.24it/s]
66%|██████▌ | 78306/118287 [00:20<00:09, 4056.62it/s]
80%|███████▉ | 94321/118287 [00:21<00:05, 4203.95it/s]
53%|█████▎ | 62160/118287 [00:16<00:15, 3724.81it/s]
76%|███████▌ | 89870/118287 [00:21<00:06, 4237.42it/s]
75%|███████▍ | 88583/118287 [00:21<00:07, 4212.40it/s]
75%|███████▌ | 88810/118287 [00:21<00:07, 4115.85it/s]
82%|████████▏ | 96850/118287 [00:21<00:04, 4678.49it/s]
68%|██████▊ | 79930/118287 [00:20<00:09, 4115.28it/s]
67%|██████▋ | 78713/118287 [00:20<00:09, 4007.76it/s]
80%|████████ | 94743/118287 [00:21<00:05, 4207.02it/s]
53%|█████▎ | 62534/118287 [00:16<00:15, 3607.99it/s]
76%|███████▋ | 90306/118287 [00:21<00:06, 4258.01it/s]
75%|███████▌ | 89012/118287 [00:21<00:06, 4234.25it/s]
75%|███████▌ | 89239/118287 [00:21<00:06, 4163.95it/s]
82%|████████▏ | 97321/118287 [00:21<00:04, 4687.83it/s]
68%|██████▊ | 80342/118287 [00:20<00:09, 4037.14it/s]
67%|██████▋ | 79128/118287 [00:20<00:09, 4044.17it/s]
80%|████████ | 95171/118287 [00:21<00:05, 4227.51it/s]
53%|█████▎ | 62897/118287 [00:16<00:15, 3544.04it/s]
77%|███████▋ | 90733/118287 [00:21<00:06, 4204.05it/s]
76%|███████▌ | 89492/118287 [00:21<00:06, 4388.89it/s]
76%|███████▌ | 89701/118287 [00:21<00:06, 4287.49it/s]
83%|████████▎ | 97791/118287 [00:21<00:04, 4623.48it/s]
68%|██████▊ | 80747/118287 [00:20<00:09, 3950.20it/s]
67%|██████▋ | 79533/118287 [00:20<00:09, 4035.32it/s]
81%|████████ | 95594/118287 [00:21<00:05, 4203.07it/s]
53%|█████▎ | 63253/118287 [00:16<00:15, 3533.38it/s]
77%|███████▋ | 91154/118287 [00:21<00:06, 4195.16it/s]
76%|███████▌ | 89933/118287 [00:21<00:06, 4338.79it/s]
76%|███████▌ | 90132/118287 [00:21<00:06, 4261.12it/s]
83%|████████▎ | 98281/118287 [00:21<00:04, 4702.49it/s]
69%|██████▊ | 81143/118287 [00:20<00:09, 3940.92it/s]
68%|██████▊ | 79937/118287 [00:20<00:09, 4025.89it/s]
81%|████████ | 96015/118287 [00:21<00:05, 4200.75it/s]
77%|███████▋ | 91574/118287 [00:21<00:06, 4155.14it/s]
54%|█████▍ | 63608/118287 [00:16<00:16, 3402.44it/s]
76%|███████▋ | 90376/118287 [00:21<00:06, 4364.04it/s]
77%|███████▋ | 90560/118287 [00:21<00:06, 4163.41it/s]
83%|████████▎ | 98752/118287 [00:21<00:04, 4618.82it/s]
69%|██████▉ | 81541/118287 [00:20<00:09, 3952.20it/s]
68%|██████▊ | 80340/118287 [00:20<00:09, 3950.30it/s]
82%|████████▏ | 96470/118287 [00:21<00:05, 4297.94it/s]
54%|█████▍ | 63951/118287 [00:16<00:15, 3406.56it/s]
78%|███████▊ | 91990/118287 [00:22<00:06, 4097.01it/s]
77%|███████▋ | 90814/118287 [00:21<00:06, 4347.01it/s]
77%|███████▋ | 90986/118287 [00:21<00:06, 4185.85it/s]
84%|████████▍ | 99215/118287 [00:21<00:04, 4522.94it/s]
69%|██████▉ | 81937/118287 [00:20<00:09, 3951.73it/s]
68%|██████▊ | 80736/118287 [00:20<00:09, 3898.10it/s]
82%|████████▏ | 96901/118287 [00:21<00:05, 4262.65it/s]
54%|█████▍ | 64318/118287 [00:16<00:15, 3480.99it/s]
78%|███████▊ | 92417/118287 [00:22<00:06, 4146.93it/s]
77%|███████▋ | 91250/118287 [00:21<00:06, 4332.48it/s]
77%|███████▋ | 91408/118287 [00:21<00:06, 4195.09it/s]
84%|████████▍ | 99676/118287 [00:21<00:04, 4546.98it/s]
70%|██████▉ | 82351/118287 [00:20<00:08, 4004.02it/s]
69%|██████▊ | 81127/118287 [00:21<00:09, 3898.14it/s]
82%|████████▏ | 97328/118287 [00:21<00:04, 4253.76it/s]
55%|█████▍ | 64684/118287 [00:17<00:15, 3532.68it/s]
78%|███████▊ | 92833/118287 [00:22<00:06, 4109.98it/s]
78%|███████▊ | 91684/118287 [00:21<00:06, 4291.07it/s]
78%|███████▊ | 91829/118287 [00:21<00:06, 4138.87it/s]
70%|██████▉ | 82771/118287 [00:21<00:08, 4058.88it/s]
85%|████████▍ | 100132/118287 [00:21<00:04, 4504.96it/s]
69%|██████▉ | 81518/118287 [00:21<00:09, 3900.98it/s]
83%|████████▎ | 97754/118287 [00:21<00:04, 4206.09it/s]
55%|█████▍ | 65048/118287 [00:17<00:14, 3561.71it/s]
79%|███████▉ | 93245/118287 [00:22<00:06, 4101.07it/s]
78%|███████▊ | 92120/118287 [00:21<00:06, 4310.68it/s]
78%|███████▊ | 92246/118287 [00:21<00:06, 4142.51it/s]
70%|███████ | 83214/118287 [00:21<00:08, 4161.82it/s]
85%|████████▌ | 100601/118287 [00:22<00:03, 4554.65it/s]
69%|██████▉ | 81913/118287 [00:21<00:09, 3908.35it/s]
83%|████████▎ | 98204/118287 [00:21<00:04, 4278.83it/s]
55%|█████▌ | 65405/118287 [00:17<00:14, 3534.88it/s]
79%|███████▉ | 93677/118287 [00:22<00:05, 4163.52it/s]
78%|███████▊ | 92562/118287 [00:22<00:05, 4340.95it/s]
78%|███████▊ | 92661/118287 [00:21<00:06, 4124.50it/s]
71%|███████ | 83632/118287 [00:21<00:08, 4112.33it/s]
85%|████████▌ | 101058/118287 [00:22<00:03, 4516.43it/s]
70%|██████▉ | 82318/118287 [00:21<00:09, 3949.67it/s]
83%|████████▎ | 98646/118287 [00:22<00:04, 4318.65it/s]
56%|█████▌ | 65767/118287 [00:17<00:14, 3559.18it/s]
80%|███████▉ | 94118/118287 [00:22<00:05, 4234.42it/s]
79%|███████▊ | 92997/118287 [00:22<00:05, 4298.72it/s]
79%|███████▊ | 93078/118287 [00:22<00:06, 4136.67it/s]
71%|███████ | 84045/118287 [00:21<00:08, 4115.86it/s]
86%|████████▌ | 101511/118287 [00:22<00:03, 4448.11it/s]
70%|██████▉ | 82714/118287 [00:21<00:09, 3942.39it/s]
84%|████████▍ | 99079/118287 [00:22<00:04, 4197.42it/s]
56%|█████▌ | 66124/118287 [00:17<00:15, 3472.76it/s]
80%|███████▉ | 94543/118287 [00:22<00:05, 4152.92it/s]
79%|███████▉ | 93440/118287 [00:22<00:05, 4336.56it/s]
79%|███████▉ | 93501/118287 [00:22<00:05, 4162.88it/s]
71%|███████▏ | 84463/118287 [00:21<00:08, 4134.14it/s]
86%|████████▌ | 101975/118287 [00:22<00:03, 4503.80it/s]
70%|███████ | 83129/118287 [00:21<00:08, 3996.50it/s]
84%|████████▍ | 99505/118287 [00:22<00:04, 4215.77it/s]
56%|█████▌ | 66484/118287 [00:17<00:14, 3508.48it/s]
80%|████████ | 94979/118287 [00:22<00:05, 4212.64it/s]
79%|███████▉ | 93880/118287 [00:22<00:05, 4343.24it/s]
79%|███████▉ | 93918/118287 [00:22<00:05, 4153.06it/s]
72%|███████▏ | 84877/118287 [00:21<00:08, 4083.85it/s]
87%|████████▋ | 102426/118287 [00:22<00:03, 4452.72it/s]
71%|███████ | 83542/118287 [00:21<00:08, 4035.43it/s]
84%|████████▍ | 99933/118287 [00:22<00:04, 4232.57it/s]
57%|█████▋ | 66841/118287 [00:17<00:14, 3524.55it/s]
81%|████████ | 95402/118287 [00:22<00:05, 4202.77it/s]
80%|███████▉ | 94328/118287 [00:22<00:05, 4382.76it/s]
80%|███████▉ | 94341/118287 [00:22<00:05, 4173.85it/s]
72%|███████▏ | 85296/118287 [00:21<00:08, 4110.93it/s]
87%|████████▋ | 102872/118287 [00:22<00:03, 4454.01it/s]
71%|███████ | 83957/118287 [00:21<00:08, 4066.38it/s]
85%|████████▍ | 100357/118287 [00:22<00:04, 4222.26it/s]
57%|█████▋ | 67242/118287 [00:17<00:13, 3655.74it/s]
81%|████████ | 95828/118287 [00:22<00:05, 4218.99it/s]
80%|████████ | 94769/118287 [00:22<00:05, 4389.68it/s]
80%|████████ | 94759/118287 [00:22<00:05, 4168.93it/s]
72%|███████▏ | 85708/118287 [00:21<00:07, 4083.97it/s]
87%|████████▋ | 103336/118287 [00:22<00:03, 4508.22it/s]
71%|███████▏ | 84364/118287 [00:21<00:08, 4041.17it/s]
85%|████████▌ | 100782/118287 [00:22<00:04, 4230.42it/s]
81%|████████▏ | 96251/118287 [00:23<00:05, 4213.40it/s]
80%|████████ | 95221/118287 [00:22<00:05, 4427.95it/s]
57%|█████▋ | 67610/118287 [00:17<00:14, 3547.75it/s]
80%|████████ | 95196/118287 [00:22<00:05, 4225.65it/s]
73%|███████▎ | 86117/118287 [00:21<00:07, 4049.39it/s]
88%|████████▊ | 103788/118287 [00:22<00:03, 4452.12it/s]
72%|███████▏ | 84769/118287 [00:21<00:08, 3996.56it/s]
86%|████████▌ | 101206/118287 [00:22<00:04, 4188.21it/s]
82%|████████▏ | 96695/118287 [00:23<00:05, 4276.80it/s]
81%|████████ | 95664/118287 [00:22<00:05, 4400.85it/s]
57%|█████▋ | 67972/118287 [00:18<00:14, 3568.18it/s]
81%|████████ | 95619/118287 [00:22<00:05, 4186.02it/s]
73%|███████▎ | 86527/118287 [00:21<00:07, 4062.36it/s]
88%|████████▊ | 104234/118287 [00:22<00:03, 4407.81it/s]
72%|███████▏ | 85169/118287 [00:22<00:08, 3984.64it/s]
86%|████████▌ | 101633/118287 [00:22<00:03, 4190.34it/s]
82%|████████▏ | 97124/118287 [00:23<00:04, 4266.70it/s]
81%|████████ | 96105/118287 [00:22<00:05, 4374.86it/s]
58%|█████▊ | 68331/118287 [00:18<00:14, 3565.60it/s]
81%|████████ | 96040/118287 [00:22<00:05, 4188.30it/s]
73%|███████▎ | 86934/118287 [00:22<00:07, 3989.57it/s]
88%|████████▊ | 104681/118287 [00:22<00:03, 4423.47it/s]
72%|███████▏ | 85578/118287 [00:22<00:08, 4015.23it/s]
86%|████████▋ | 102055/118287 [00:22<00:03, 4192.24it/s]
82%|████████▏ | 97551/118287 [00:23<00:04, 4261.73it/s]
82%|████████▏ | 96595/118287 [00:22<00:04, 4517.86it/s]
58%|█████▊ | 68689/118287 [00:18<00:13, 3566.03it/s]
82%|████████▏ | 96510/118287 [00:22<00:05, 4326.38it/s]
74%|███████▍ | 87334/118287 [00:22<00:07, 3978.60it/s]
89%|████████▉ | 105132/118287 [00:23<00:02, 4448.74it/s]
73%|███████▎ | 85980/118287 [00:22<00:08, 3957.83it/s]
87%|████████▋ | 102480/118287 [00:22<00:03, 4209.06it/s]
83%|████████▎ | 97978/118287 [00:23<00:04, 4227.65it/s]
82%|████████▏ | 97051/118287 [00:23<00:04, 4528.56it/s]
58%|█████▊ | 69064/118287 [00:18<00:13, 3618.48it/s]
82%|████████▏ | 96951/118287 [00:23<00:04, 4347.36it/s]
74%|███████▍ | 87733/118287 [00:22<00:07, 3971.11it/s]
89%|████████▉ | 105578/118287 [00:23<00:02, 4339.05it/s]
73%|███████▎ | 86377/118287 [00:22<00:08, 3955.54it/s]
87%|████████▋ | 102902/118287 [00:23<00:03, 4209.02it/s]
83%|████████▎ | 98419/118287 [00:23<00:04, 4276.48it/s]
82%|████████▏ | 97505/118287 [00:23<00:04, 4516.42it/s]
59%|█████▊ | 69427/118287 [00:18<00:13, 3578.42it/s]
82%|████████▏ | 97387/118287 [00:23<00:04, 4342.93it/s]
75%|███████▍ | 88154/118287 [00:22<00:07, 4033.57it/s]
90%|████████▉ | 106048/118287 [00:23<00:02, 4439.33it/s]
73%|███████▎ | 86773/118287 [00:22<00:08, 3936.08it/s]
87%|████████▋ | 103338/118287 [00:23<00:03, 4252.13it/s]
84%|████████▎ | 98847/118287 [00:23<00:04, 4257.27it/s]
83%|████████▎ | 97958/118287 [00:23<00:04, 4468.93it/s]
59%|█████▉ | 69812/118287 [00:18<00:13, 3647.15it/s]
83%|████████▎ | 97822/118287 [00:23<00:04, 4268.96it/s]
75%|███████▍ | 88558/118287 [00:22<00:07, 3972.13it/s]
90%|█████████ | 106494/118287 [00:23<00:02, 4399.90it/s]
74%|███████▎ | 87167/118287 [00:22<00:07, 3891.75it/s]
88%|████████▊ | 103764/118287 [00:23<00:03, 4249.28it/s]
84%|████████▍ | 99273/118287 [00:23<00:04, 4208.23it/s]
83%|████████▎ | 98419/118287 [00:23<00:04, 4508.28it/s]
59%|█████▉ | 70226/118287 [00:18<00:12, 3782.19it/s]
83%|████████▎ | 98291/118287 [00:23<00:04, 4386.58it/s]
75%|███████▌ | 88965/118287 [00:22<00:07, 3998.88it/s]
90%|█████████ | 106935/118287 [00:23<00:02, 4370.98it/s]
74%|███████▍ | 87557/118287 [00:22<00:07, 3853.91it/s]
88%|████████▊ | 104190/118287 [00:23<00:03, 4190.38it/s]
84%|████████▎ | 98871/118287 [00:23<00:04, 4506.26it/s]
84%|████████▍ | 99695/118287 [00:23<00:04, 4190.76it/s]
60%|█████▉ | 70634/118287 [00:18<00:12, 3866.41it/s]
83%|████████▎ | 98731/118287 [00:23<00:04, 4374.06it/s]
76%|███████▌ | 89407/118287 [00:22<00:07, 4115.89it/s]
91%|█████████ | 107410/118287 [00:23<00:02, 4474.90it/s]
74%|███████▍ | 87952/118287 [00:22<00:07, 3880.29it/s]
88%|████████▊ | 104617/118287 [00:23<00:03, 4210.42it/s]
85%|████████▍ | 100115/118287 [00:23<00:04, 4168.13it/s]
60%|██████ | 71036/118287 [00:18<00:12, 3909.86it/s]
84%|████████▍ | 99322/118287 [00:23<00:04, 4460.34it/s]
84%|████████▍ | 99170/118287 [00:23<00:04, 4244.05it/s]
76%|███████▌ | 89820/118287 [00:22<00:06, 4096.27it/s]
91%|█████████ | 107859/118287 [00:23<00:02, 4424.30it/s]
75%|███████▍ | 88350/118287 [00:22<00:07, 3905.99it/s]
89%|████████▉ | 105046/118287 [00:23<00:03, 4231.34it/s]
85%|████████▌ | 100547/118287 [00:24<00:04, 4210.92it/s]
84%|████████▍ | 99769/118287 [00:23<00:04, 4411.56it/s]
60%|██████ | 71429/118287 [00:18<00:12, 3834.11it/s]
84%|████████▍ | 99614/118287 [00:23<00:04, 4300.93it/s]
76%|███████▋ | 90240/118287 [00:22<00:06, 4121.70it/s]
92%|█████████▏| 108318/118287 [00:23<00:02, 4470.73it/s]
75%|███████▌ | 88741/118287 [00:22<00:07, 3894.90it/s]
89%|████████▉ | 105470/118287 [00:23<00:03, 4137.04it/s]
85%|████████▌ | 100973/118287 [00:24<00:04, 4224.42it/s]
85%|████████▍ | 100225/118287 [00:23<00:04, 4454.05it/s]
61%|██████ | 71814/118287 [00:19<00:12, 3825.05it/s]
85%|████████▍ | 100046/118287 [00:23<00:04, 4265.80it/s]
77%|███████▋ | 90653/118287 [00:22<00:06, 4044.28it/s]
75%|███████▌ | 89139/118287 [00:23<00:07, 3919.88it/s]
92%|█████████▏| 108766/118287 [00:23<00:02, 4393.44it/s]
90%|████████▉ | 105885/118287 [00:23<00:03, 4117.60it/s]
85%|████████▌ | 100686/118287 [00:23<00:03, 4499.31it/s]
86%|████████▌ | 101396/118287 [00:24<00:04, 4108.63it/s]
61%|██████ | 72198/118287 [00:19<00:12, 3822.52it/s]
85%|████████▍ | 100482/118287 [00:23<00:04, 4289.33it/s]
77%|███████▋ | 91071/118287 [00:23<00:06, 4082.86it/s]
76%|███████▌ | 89577/118287 [00:23<00:07, 4045.78it/s]
92%|█████████▏| 109207/118287 [00:23<00:02, 4305.36it/s]
90%|████████▉ | 106320/118287 [00:23<00:02, 4180.48it/s]
86%|████████▌ | 101825/118287 [00:24<00:03, 4159.64it/s]
86%|████████▌ | 101137/118287 [00:23<00:03, 4435.27it/s]
61%|██████▏ | 72581/118287 [00:19<00:12, 3659.99it/s]
85%|████████▌ | 100912/118287 [00:23<00:04, 4284.57it/s]
77%|███████▋ | 91480/118287 [00:23<00:06, 4006.29it/s]
76%|███████▌ | 89983/118287 [00:23<00:07, 3973.72it/s]
93%|█████████▎| 109639/118287 [00:24<00:02, 4242.22it/s]
90%|█████████ | 106739/118287 [00:24<00:02, 4107.28it/s]
86%|████████▋ | 102242/118287 [00:24<00:03, 4145.33it/s]
86%|████████▌ | 101581/118287 [00:24<00:03, 4388.91it/s]
62%|██████▏ | 72949/118287 [00:19<00:12, 3631.26it/s]
86%|████████▌ | 101341/118287 [00:24<00:04, 4229.56it/s]
76%|███████▋ | 90388/118287 [00:23<00:06, 3987.85it/s]
78%|███████▊ | 91882/118287 [00:23<00:06, 3885.31it/s]
93%|█████████▎| 110087/118287 [00:24<00:01, 4308.86it/s]
91%|█████████ | 107192/118287 [00:24<00:02, 4224.93it/s]
87%|████████▋ | 102693/118287 [00:24<00:03, 4248.20it/s]
86%|████████▋ | 102023/118287 [00:24<00:03, 4395.95it/s]
62%|██████▏ | 73314/118287 [00:19<00:12, 3586.48it/s]
86%|████████▌ | 101781/118287 [00:24<00:03, 4277.41it/s]
78%|███████▊ | 92272/118287 [00:23<00:06, 3883.05it/s]
77%|███████▋ | 90788/118287 [00:23<00:06, 3945.54it/s]
93%|█████████▎| 110519/118287 [00:24<00:01, 4247.18it/s]
91%|█████████ | 107616/118287 [00:24<00:02, 4211.04it/s]
87%|████████▋ | 102463/118287 [00:24<00:03, 4376.85it/s]
87%|████████▋ | 103119/118287 [00:24<00:03, 4164.10it/s]
86%|████████▋ | 102210/118287 [00:24<00:03, 4236.12it/s]
62%|██████▏ | 73674/118287 [00:19<00:12, 3539.38it/s]
77%|███████▋ | 91184/118287 [00:23<00:06, 3930.26it/s]
78%|███████▊ | 92662/118287 [00:23<00:06, 3822.00it/s]
94%|█████████▍| 110945/118287 [00:24<00:01, 4230.50it/s]
91%|█████████▏| 108065/118287 [00:24<00:02, 4288.49it/s]
87%|████████▋ | 102901/118287 [00:24<00:03, 4369.86it/s]
88%|████████▊ | 103537/118287 [00:24<00:03, 4156.85it/s]
87%|████████▋ | 102656/118287 [00:24<00:03, 4298.56it/s]
63%|██████▎ | 74037/118287 [00:19<00:12, 3565.45it/s]
77%|███████▋ | 91578/118287 [00:23<00:06, 3922.37it/s]
79%|███████▊ | 93046/118287 [00:23<00:06, 3813.56it/s]
94%|█████████▍| 111408/118287 [00:24<00:01, 4338.08it/s]
92%|█████████▏| 108495/118287 [00:24<00:02, 4218.02it/s]
87%|████████▋ | 103353/118287 [00:24<00:03, 4411.29it/s]
88%|████████▊ | 103954/118287 [00:24<00:03, 4054.08it/s]
87%|████████▋ | 103087/118287 [00:24<00:03, 4250.55it/s]
63%|██████▎ | 74395/118287 [00:19<00:12, 3537.02it/s]
78%|███████▊ | 91971/118287 [00:23<00:06, 3869.27it/s]
79%|███████▉ | 93428/118287 [00:23<00:06, 3780.26it/s]
95%|█████████▍| 111846/118287 [00:24<00:01, 4345.39it/s]
92%|█████████▏| 108918/118287 [00:24<00:02, 4144.57it/s]
88%|████████▊ | 103795/118287 [00:24<00:03, 4346.87it/s]
88%|████████▊ | 104379/118287 [00:24<00:03, 4109.13it/s]
88%|████████▊ | 103518/118287 [00:24<00:03, 4266.23it/s]
63%|██████▎ | 74750/118287 [00:19<00:12, 3479.29it/s]
78%|███████▊ | 92375/118287 [00:23<00:06, 3912.80it/s]
95%|█████████▍| 112282/118287 [00:24<00:01, 4339.91it/s]
79%|███████▉ | 93807/118287 [00:23<00:06, 3750.29it/s]
92%|█████████▏| 109334/118287 [00:24<00:02, 4072.04it/s]
88%|████████▊ | 104231/118287 [00:24<00:03, 4286.97it/s]
89%|████████▊ | 104803/118287 [00:25<00:03, 4141.46it/s]
63%|██████▎ | 75099/118287 [00:19<00:12, 3459.90it/s]
88%|████████▊ | 103945/118287 [00:24<00:03, 4165.07it/s]
78%|███████▊ | 92767/118287 [00:24<00:06, 3894.73it/s]
80%|███████▉ | 94189/118287 [00:23<00:06, 3769.60it/s]
95%|█████████▌| 112717/118287 [00:24<00:01, 4265.42it/s]
93%|█████████▎| 109743/118287 [00:24<00:02, 4046.66it/s]
88%|████████▊ | 104663/118287 [00:24<00:03, 4291.26it/s]
89%|████████▉ | 105219/118287 [00:25<00:03, 4144.90it/s]
88%|████████▊ | 104383/118287 [00:24<00:03, 4227.18it/s]
64%|██████▍ | 75446/118287 [00:20<00:12, 3399.38it/s]
80%|███████▉ | 94567/118287 [00:24<00:06, 3754.72it/s]
79%|███████▉ | 93157/118287 [00:24<00:06, 3827.64it/s]
96%|█████████▌| 113154/118287 [00:24<00:01, 4292.87it/s]
93%|█████████▎| 110184/118287 [00:24<00:01, 4147.46it/s]
89%|████████▉ | 105093/118287 [00:24<00:03, 4271.86it/s]
89%|████████▉ | 105634/118287 [00:25<00:03, 4039.50it/s]
89%|████████▊ | 104825/118287 [00:24<00:03, 4281.25it/s]
64%|██████▍ | 75824/118287 [00:20<00:12, 3504.86it/s]
80%|████████ | 94959/118287 [00:24<00:06, 3799.71it/s]
79%|███████▉ | 93584/118287 [00:24<00:06, 3948.56it/s]
96%|█████████▌| 113584/118287 [00:25<00:01, 4294.04it/s]
94%|█████████▎| 110600/118287 [00:24<00:01, 4068.37it/s]
90%|████████▉ | 106068/118287 [00:25<00:02, 4119.19it/s]
89%|████████▉ | 105521/118287 [00:25<00:03, 4141.00it/s]
89%|████████▉ | 105254/118287 [00:24<00:03, 4265.21it/s]
64%|██████▍ | 76193/118287 [00:20<00:11, 3558.39it/s]
79%|███████▉ | 93992/118287 [00:24<00:06, 3986.72it/s]
81%|████████ | 95340/118287 [00:24<00:06, 3751.61it/s]
96%|█████████▋| 114014/118287 [00:25<00:01, 4236.08it/s]
94%|█████████▍| 111026/118287 [00:25<00:01, 4121.05it/s]
90%|█████████ | 106481/118287 [00:25<00:02, 4116.68it/s]
90%|████████▉ | 105971/118287 [00:25<00:02, 4242.13it/s]
65%|██████▍ | 76560/118287 [00:20<00:11, 3589.83it/s]
89%|████████▉ | 105682/118287 [00:25<00:03, 4158.54it/s]
80%|███████▉ | 94392/118287 [00:24<00:06, 3935.87it/s]
97%|█████████▋| 114439/118287 [00:25<00:00, 4213.29it/s]
81%|████████ | 95716/118287 [00:24<00:06, 3675.31it/s]
94%|█████████▍| 111458/118287 [00:25<00:01, 4177.25it/s]
90%|█████████ | 106897/118287 [00:25<00:02, 4125.53it/s]
90%|████████▉ | 106397/118287 [00:25<00:02, 4206.63it/s]
65%|██████▌ | 76926/118287 [00:20<00:11, 3606.59it/s]
90%|████████▉ | 106116/118287 [00:25<00:02, 4209.75it/s]
80%|████████ | 94805/118287 [00:24<00:05, 3990.72it/s]
97%|█████████▋| 114876/118287 [00:25<00:00, 4257.58it/s]
81%|████████ | 96085/118287 [00:24<00:06, 3656.98it/s]
95%|█████████▍| 111877/118287 [00:25<00:01, 4130.03it/s]
91%|█████████ | 107342/118287 [00:25<00:02, 4217.04it/s]
90%|█████████ | 106819/118287 [00:25<00:02, 4173.21it/s]
65%|██████▌ | 77316/118287 [00:20<00:11, 3689.47it/s]
90%|█████████ | 106538/118287 [00:25<00:02, 4185.10it/s]
80%|████████ | 95205/118287 [00:24<00:05, 3986.32it/s]
82%|████████▏ | 96490/118287 [00:24<00:05, 3766.09it/s]
97%|█████████▋| 115303/118287 [00:25<00:00, 4176.99it/s]
95%|█████████▍| 112293/118287 [00:25<00:01, 4137.21it/s]
91%|█████████ | 107765/118287 [00:25<00:02, 4206.07it/s]
91%|█████████ | 107282/118287 [00:25<00:02, 4299.94it/s]
66%|██████▌ | 77704/118287 [00:20<00:10, 3743.63it/s]
90%|█████████ | 106958/118287 [00:25<00:02, 4174.60it/s]
81%|████████ | 95605/118287 [00:24<00:05, 3963.79it/s]
82%|████████▏ | 96868/118287 [00:24<00:05, 3731.34it/s]
98%|█████████▊| 115735/118287 [00:25<00:00, 4218.80it/s]
95%|█████████▌| 112708/118287 [00:25<00:01, 4062.31it/s]
91%|█████████▏| 108187/118287 [00:25<00:02, 4206.54it/s]
91%|█████████ | 107714/118287 [00:25<00:02, 4248.95it/s]
66%|██████▌ | 78084/118287 [00:20<00:10, 3760.22it/s]
91%|█████████ | 107414/118287 [00:25<00:02, 4277.34it/s]
81%|████████ | 96002/118287 [00:24<00:05, 3934.35it/s]
82%|████████▏ | 97252/118287 [00:24<00:05, 3762.20it/s]
98%|█████████▊| 116182/118287 [00:25<00:00, 4287.65it/s]
96%|█████████▌| 113117/118287 [00:25<00:01, 4069.29it/s]
92%|█████████▏| 108609/118287 [00:25<00:02, 4174.26it/s]
91%|█████████▏| 108153/118287 [00:25<00:02, 4288.39it/s]
91%|█████████ | 107843/118287 [00:25<00:02, 4251.71it/s]
66%|██████▋ | 78461/118287 [00:20<00:10, 3648.53it/s]
82%|████████▏ | 96411/118287 [00:24<00:05, 3979.30it/s]
83%|████████▎ | 97629/118287 [00:24<00:05, 3749.86it/s]
99%|█████████▊| 116612/118287 [00:25<00:00, 4257.22it/s]
96%|█████████▌| 113527/118287 [00:25<00:01, 4076.88it/s]
92%|█████████▏| 109027/118287 [00:26<00:02, 4086.83it/s]
92%|█████████▏| 108583/118287 [00:25<00:02, 4210.73it/s]
92%|█████████▏| 108282/118287 [00:25<00:02, 4288.27it/s]
67%|██████▋ | 78827/118287 [00:21<00:11, 3575.95it/s]
82%|████████▏ | 96816/118287 [00:25<00:05, 3998.89it/s]
83%|████████▎ | 98013/118287 [00:24<00:05, 3776.06it/s]
99%|█████████▉| 117039/118287 [00:25<00:00, 4237.54it/s]
96%|█████████▋| 113936/118287 [00:25<00:01, 4041.40it/s]
93%|█████████▎| 109437/118287 [00:26<00:02, 3978.67it/s]
92%|█████████▏| 109006/118287 [00:25<00:02, 4151.65it/s]
92%|█████████▏| 108712/118287 [00:25<00:02, 4212.60it/s]
67%|██████▋ | 79201/118287 [00:21<00:10, 3622.65it/s]
82%|████████▏ | 97230/118287 [00:25<00:05, 4032.90it/s]
83%|████████▎ | 98415/118287 [00:25<00:05, 3845.03it/s]
99%|█████████▉| 117464/118287 [00:25<00:00, 4170.95it/s]
97%|█████████▋| 114341/118287 [00:25<00:00, 4020.78it/s]
93%|█████████▎| 109839/118287 [00:26<00:02, 3987.53it/s]
93%|█████████▎| 109423/118287 [00:25<00:02, 4024.03it/s]
67%|██████▋ | 79565/118287 [00:21<00:10, 3621.11it/s]
92%|█████████▏| 109134/118287 [00:25<00:02, 4135.24it/s]
83%|████████▎ | 97634/118287 [00:25<00:05, 3981.54it/s]
84%|████████▎ | 98801/118287 [00:25<00:05, 3798.28it/s]
100%|█████████▉| 117882/118287 [00:26<00:00, 4094.79it/s]
97%|█████████▋| 114754/118287 [00:25<00:00, 4052.84it/s]
93%|█████████▎| 110259/118287 [00:26<00:01, 4046.72it/s]
93%|█████████▎| 109836/118287 [00:26<00:02, 4045.69it/s]
68%|██████▊ | 79928/118287 [00:21<00:10, 3555.76it/s]
93%|█████████▎| 109549/118287 [00:25<00:02, 4032.33it/s]
83%|████████▎ | 98038/118287 [00:25<00:05, 3995.21it/s]
84%|████████▍ | 99182/118287 [00:25<00:05, 3754.84it/s]
100%|██████████| 118287/118287 [00:26<00:00, 4524.22it/s][0308 18:58:42 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:26.2398sec.
97%|█████████▋| 115160/118287 [00:26<00:00, 4039.65it/s]
94%|█████████▎| 110665/118287 [00:26<00:01, 3974.36it/s]
93%|█████████▎| 110268/118287 [00:26<00:01, 4123.81it/s]
68%|██████▊ | 80309/118287 [00:21<00:10, 3627.67it/s]
93%|█████████▎| 109971/118287 [00:26<00:02, 4085.65it/s]
83%|████████▎ | 98456/118287 [00:25<00:04, 4044.42it/s]
84%|████████▍ | 99583/118287 [00:25<00:04, 3824.85it/s]
98%|█████████▊| 115565/118287 [00:26<00:00, 3979.93it/s]
94%|█████████▍| 111081/118287 [00:26<00:01, 4026.71it/s]
94%|█████████▎| 110682/118287 [00:26<00:01, 4067.16it/s]
68%|██████▊ | 80676/118287 [00:21<00:10, 3637.78it/s]
93%|█████████▎| 110387/118287 [00:26<00:01, 4105.78it/s]
84%|████████▎ | 98861/118287 [00:25<00:04, 4018.69it/s]
85%|████████▍ | 99967/118287 [00:25<00:04, 3803.71it/s]
98%|█████████▊| 115984/118287 [00:26<00:00, 4036.57it/s]
94%|█████████▍| 111489/118287 [00:26<00:01, 4042.15it/s]
94%|█████████▍| 111099/118287 [00:26<00:01, 4097.14it/s]
69%|██████▊ | 81061/118287 [00:21<00:10, 3690.46it/s]
94%|█████████▎| 110799/118287 [00:26<00:01, 4049.47it/s]
84%|████████▍ | 99264/118287 [00:25<00:04, 3955.85it/s]
85%|████████▍ | 100348/118287 [00:25<00:04, 3746.54it/s]
98%|█████████▊| 116391/118287 [00:26<00:00, 4041.64it/s]
95%|█████████▍| 111894/118287 [00:26<00:01, 4018.02it/s]
94%|█████████▍| 111527/118287 [00:26<00:01, 4148.38it/s]
69%|██████▉ | 81455/118287 [00:21<00:09, 3760.54it/s]
94%|█████████▍| 111242/118287 [00:26<00:01, 4155.25it/s]
84%|████████▍ | 99665/118287 [00:25<00:04, 3964.64it/s]
85%|████████▌ | 100728/118287 [00:25<00:04, 3761.73it/s]
99%|█████████▊| 116796/118287 [00:26<00:00, 4010.49it/s]
95%|█████████▍| 112297/118287 [00:26<00:01, 4021.57it/s]
69%|██████▉ | 81832/118287 [00:21<00:09, 3723.14it/s]
95%|█████████▍| 111943/118287 [00:26<00:01, 4072.05it/s]
94%|█████████▍| 111659/118287 [00:26<00:01, 4145.02it/s]
85%|████████▍ | 100062/118287 [00:25<00:04, 3944.38it/s]
85%|████████▌ | 101105/118287 [00:25<00:04, 3716.20it/s]
99%|█████████▉| 117203/118287 [00:26<00:00, 4026.96it/s]
95%|█████████▌| 112700/118287 [00:27<00:01, 3956.23it/s]
95%|█████████▍| 112364/118287 [00:26<00:01, 4111.48it/s]
95%|█████████▍| 112075/118287 [00:26<00:01, 4131.56it/s]
69%|██████▉ | 82205/118287 [00:21<00:10, 3603.81it/s]
85%|████████▍ | 100472/118287 [00:25<00:04, 3989.56it/s]
86%|████████▌ | 101478/118287 [00:25<00:04, 3661.35it/s]
99%|█████████▉| 117606/118287 [00:26<00:00, 4007.16it/s]
96%|█████████▌| 113097/118287 [00:27<00:01, 3913.17it/s]
95%|█████████▌| 112509/118287 [00:26<00:01, 4191.22it/s]
95%|█████████▌| 112776/118287 [00:26<00:01, 3975.58it/s]
85%|████████▌ | 100872/118287 [00:26<00:04, 3922.71it/s]
70%|██████▉ | 82567/118287 [00:22<00:10, 3415.46it/s]
86%|████████▌ | 101865/118287 [00:25<00:04, 3721.47it/s]
100%|█████████▉| 118007/118287 [00:26<00:00, 3914.83it/s]
96%|█████████▌| 113503/118287 [00:27<00:01, 3955.48it/s]
96%|█████████▌| 113200/118287 [00:26<00:01, 4049.12it/s]
95%|█████████▌| 112929/118287 [00:26<00:01, 4001.30it/s]
86%|████████▌ | 101265/118287 [00:26<00:04, 3881.93it/s]
86%|████████▋ | 102238/118287 [00:26<00:04, 3675.35it/s]
70%|███████ | 82912/118287 [00:22<00:10, 3271.13it/s]
100%|██████████| 118287/118287 [00:26<00:00, 4404.52it/s][0308 18:58:43 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:26.9406sec.
96%|█████████▋| 113899/118287 [00:27<00:01, 3923.54it/s]
96%|█████████▌| 113607/118287 [00:26<00:01, 4015.92it/s]
96%|█████████▌| 113366/118287 [00:26<00:01, 4096.93it/s]
86%|████████▌ | 101654/118287 [00:26<00:04, 3865.41it/s]
87%|████████▋ | 102641/118287 [00:26<00:04, 3774.80it/s]
70%|███████ | 83243/118287 [00:22<00:11, 3170.09it/s]
97%|█████████▋| 114292/118287 [00:27<00:01, 3868.80it/s]
96%|█████████▋| 114010/118287 [00:27<00:01, 3999.70it/s]
86%|████████▋ | 102041/118287 [00:26<00:04, 3863.65it/s]
96%|█████████▌| 113778/118287 [00:27<00:01, 4028.49it/s]
87%|████████▋ | 103020/118287 [00:26<00:04, 3715.64it/s]
71%|███████ | 83564/118287 [00:22<00:11, 3118.91it/s]
97%|█████████▋| 114684/118287 [00:27<00:00, 3881.59it/s]
97%|█████████▋| 114411/118287 [00:27<00:00, 3973.61it/s]
87%|████████▋ | 102428/118287 [00:26<00:04, 3844.19it/s]
97%|█████████▋| 114183/118287 [00:27<00:01, 3966.60it/s]
87%|████████▋ | 103399/118287 [00:26<00:03, 3737.04it/s]Done loading roidbs
71%|███████ | 83906/118287 [00:22<00:10, 3203.49it/s]
97%|█████████▋| 115080/118287 [00:27<00:00, 3902.15it/s]
97%|█████████▋| 114817/118287 [00:27<00:00, 3998.49it/s]
87%|████████▋ | 102818/118287 [00:26<00:04, 3858.36it/s]
97%|█████████▋| 114605/118287 [00:27<00:00, 4038.18it/s]
88%|████████▊ | 103774/118287 [00:26<00:03, 3736.04it/s]
71%|███████ | 84232/118287 [00:22<00:10, 3219.31it/s]
98%|█████████▊| 115471/118287 [00:27<00:00, 3841.83it/s]
97%|█████████▋| 115218/118287 [00:27<00:00, 3951.85it/s]
87%|████████▋ | 103230/118287 [00:26<00:03, 3929.91it/s]
97%|█████████▋| 115018/118287 [00:27<00:00, 4064.30it/s]
88%|████████▊ | 104149/118287 [00:26<00:03, 3701.82it/s]
71%|███████▏ | 84556/118287 [00:22<00:10, 3129.58it/s]
98%|█████████▊| 115885/118287 [00:27<00:00, 3926.40it/s]
98%|█████████▊| 115614/118287 [00:27<00:00, 3896.40it/s]
98%|█████████▊| 115426/118287 [00:27<00:00, 4004.23it/s]
88%|████████▊ | 103624/118287 [00:26<00:03, 3795.12it/s]
88%|████████▊ | 104528/118287 [00:26<00:03, 3726.57it/s]
72%|███████▏ | 84889/118287 [00:22<00:10, 3185.51it/s]
98%|█████████▊| 116292/118287 [00:27<00:00, 3966.81it/s]
98%|█████████▊| 116051/118287 [00:27<00:00, 4026.26it/s]
98%|█████████▊| 115835/118287 [00:27<00:00, 4027.69it/s]
88%|████████▊ | 104011/118287 [00:26<00:03, 3808.55it/s]
89%|████████▊ | 104901/118287 [00:26<00:03, 3723.95it/s]
72%|███████▏ | 85212/118287 [00:22<00:10, 3195.45it/s]
99%|█████████▊| 116695/118287 [00:28<00:00, 3984.87it/s]
98%|█████████▊| 116456/118287 [00:27<00:00, 4026.18it/s]
98%|█████████▊| 116252/118287 [00:27<00:00, 4064.01it/s]
88%|████████▊ | 104399/118287 [00:26<00:03, 3826.23it/s]
89%|████████▉ | 105294/118287 [00:26<00:03, 3778.58it/s]
72%|███████▏ | 85556/118287 [00:22<00:10, 3264.04it/s][0308 18:58:44 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
99%|█████████▉| 117102/118287 [00:28<00:00, 4004.28it/s]
99%|█████████▉| 116860/118287 [00:27<00:00, 3970.92it/s]
89%|████████▊ | 104795/118287 [00:27<00:03, 3865.30it/s]
99%|█████████▊| 116659/118287 [00:27<00:00, 4043.60it/s]
89%|████████▉ | 105673/118287 [00:26<00:03, 3626.11it/s]
73%|███████▎ | 85884/118287 [00:23<00:09, 3261.40it/s]
99%|█████████▉| 117503/118287 [00:28<00:00, 3949.90it/s]
99%|█████████▉| 117264/118287 [00:27<00:00, 3989.89it/s]
89%|████████▉ | 105183/118287 [00:27<00:03, 3861.24it/s]
99%|█████████▉| 117077/118287 [00:27<00:00, 4078.67it/s]
90%|████████▉ | 106060/118287 [00:27<00:03, 3695.67it/s]
73%|███████▎ | 86273/118287 [00:23<00:09, 3421.49it/s]
100%|█████████▉| 117899/118287 [00:28<00:00, 3889.75it/s]
99%|█████████▉| 117673/118287 [00:28<00:00, 4014.80it/s]
99%|█████████▉| 117486/118287 [00:27<00:00, 4023.16it/s]
89%|████████▉ | 105570/118287 [00:27<00:03, 3747.55it/s]
90%|████████▉ | 106431/118287 [00:27<00:03, 3683.07it/s]
73%|███████▎ | 86639/118287 [00:23<00:09, 3488.56it/s]
100%|██████████| 118287/118287 [00:28<00:00, 4156.66it/s][0308 18:58:44 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:28.5410sec.
100%|█████████▉| 118075/118287 [00:28<00:00, 3849.88it/s]
100%|█████████▉| 117889/118287 [00:28<00:00, 3998.67it/s]
90%|████████▉ | 105981/118287 [00:27<00:03, 3848.23it/s]
90%|█████████ | 106801/118287 [00:27<00:03, 3668.52it/s]
74%|███████▎ | 86990/118287 [00:23<00:09, 3445.71it/s]
100%|██████████| 118287/118287 [00:28<00:00, 4196.77it/s][0308 18:58:44 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:28.2762sec.
90%|████████▉ | 106368/118287 [00:27<00:03, 3801.97it/s]
100%|██████████| 118287/118287 [00:28<00:00, 4202.75it/s][0308 18:58:44 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:28.2322sec.
91%|█████████ | 107193/118287 [00:27<00:02, 3739.60it/s]Done loading roidbs
74%|███████▍ | 87351/118287 [00:23<00:08, 3490.84it/s]
90%|█████████ | 106750/118287 [00:27<00:03, 3765.09it/s]
91%|█████████ | 107568/118287 [00:27<00:02, 3739.33it/s]
74%|███████▍ | 87703/118287 [00:23<00:08, 3498.49it/s]
91%|█████████ | 107152/118287 [00:27<00:02, 3837.56it/s]
91%|█████████▏| 107944/118287 [00:27<00:02, 3745.35it/s]
74%|███████▍ | 88064/118287 [00:23<00:08, 3526.69it/s]
91%|█████████ | 107547/118287 [00:27<00:02, 3869.00it/s]
92%|█████████▏| 108324/118287 [00:27<00:02, 3756.51it/s]
75%|███████▍ | 88426/118287 [00:23<00:08, 3548.25it/s]
91%|█████████▏| 107946/118287 [00:27<00:02, 3904.12it/s]
92%|█████████▏| 108700/118287 [00:27<00:02, 3669.75it/s]
75%|███████▌ | 88782/118287 [00:23<00:08, 3515.45it/s]
92%|█████████▏| 108337/118287 [00:27<00:02, 3900.35it/s]
92%|█████████▏| 109068/118287 [00:27<00:02, 3638.92it/s]
75%|███████▌ | 89134/118287 [00:24<00:08, 3503.51it/s][0308 18:58:45 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
92%|█████████▏| 108728/118287 [00:28<00:02, 3816.96it/s]
76%|███████▌ | 89532/118287 [00:24<00:07, 3630.81it/s]
93%|█████████▎| 109433/118287 [00:28<00:02, 3522.65it/s]
92%|█████████▏| 109111/118287 [00:28<00:02, 3781.88it/s]
76%|███████▌ | 89897/118287 [00:24<00:07, 3592.48it/s]
93%|█████████▎| 109804/118287 [00:28<00:02, 3575.01it/s]
93%|█████████▎| 109490/118287 [00:28<00:02, 3704.30it/s]
93%|█████████▎| 110185/118287 [00:28<00:02, 3642.38it/s]
76%|███████▋ | 90261/118287 [00:24<00:07, 3599.63it/s]
93%|█████████▎| 109868/118287 [00:28<00:02, 3726.49it/s]
77%|███████▋ | 90622/118287 [00:24<00:07, 3576.04it/s]
93%|█████████▎| 110551/118287 [00:28<00:02, 3560.84it/s]
93%|█████████▎| 110259/118287 [00:28<00:02, 3777.68it/s]
77%|███████▋ | 90999/118287 [00:24<00:07, 3629.98it/s]
94%|█████████▍| 110913/118287 [00:28<00:02, 3572.89it/s]
94%|█████████▎| 110638/118287 [00:28<00:02, 3694.58it/s]
77%|███████▋ | 91366/118287 [00:24<00:07, 3641.78it/s]
94%|█████████▍| 111307/118287 [00:28<00:01, 3674.09it/s]Done loading roidbs
94%|█████████▍| 111029/118287 [00:28<00:01, 3753.09it/s]
78%|███████▊ | 91731/118287 [00:24<00:07, 3592.42it/s]
94%|█████████▍| 111680/118287 [00:28<00:01, 3690.31it/s]Done loading roidbs
Done loading roidbs
94%|█████████▍| 111415/118287 [00:28<00:01, 3777.96it/s]
95%|█████████▍| 112055/118287 [00:28<00:01, 3706.34it/s]
78%|███████▊ | 92091/118287 [00:24<00:07, 3567.14it/s]
95%|█████████▍| 111798/118287 [00:28<00:01, 3789.61it/s]
95%|█████████▌| 112454/118287 [00:28<00:01, 3782.12it/s]
78%|███████▊ | 92473/118287 [00:24<00:07, 3638.62it/s]
95%|█████████▍| 112178/118287 [00:29<00:01, 3780.56it/s]
78%|███████▊ | 92838/118287 [00:25<00:07, 3540.26it/s]
95%|█████████▌| 112834/118287 [00:28<00:01, 3645.32it/s]
95%|█████████▌| 112566/118287 [00:29<00:01, 3801.17it/s]
96%|█████████▌| 113224/118287 [00:29<00:01, 3715.68it/s]
79%|███████▉ | 93194/118287 [00:25<00:07, 3498.53it/s]
95%|█████████▌| 112947/118287 [00:29<00:01, 3693.18it/s][0308 18:58:46 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
96%|█████████▌| 113598/118287 [00:29<00:01, 3703.96it/s]
79%|███████▉ | 93577/118287 [00:25<00:06, 3588.06it/s][0308 18:58:46 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
[0308 18:58:46 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
96%|█████████▌| 113350/118287 [00:29<00:01, 3788.06it/s]
96%|█████████▋| 113970/118287 [00:29<00:01, 3703.63it/s]
79%|███████▉ | 93959/118287 [00:25<00:06, 3654.17it/s]
96%|█████████▌| 113730/118287 [00:29<00:01, 3740.59it/s]
97%|█████████▋| 114342/118287 [00:29<00:01, 3679.77it/s]
80%|███████▉ | 94326/118287 [00:25<00:06, 3596.49it/s]
96%|█████████▋| 114106/118287 [00:29<00:01, 3685.46it/s]
97%|█████████▋| 114712/118287 [00:29<00:00, 3683.57it/s]
80%|████████ | 94687/118287 [00:25<00:06, 3592.73it/s]
97%|█████████▋| 114480/118287 [00:29<00:01, 3700.87it/s]
97%|█████████▋| 115092/118287 [00:29<00:00, 3708.99it/s]
80%|████████ | 95063/118287 [00:25<00:06, 3635.28it/s]
97%|█████████▋| 114854/118287 [00:29<00:00, 3711.44it/s]
98%|█████████▊| 115464/118287 [00:29<00:00, 3655.76it/s]
81%|████████ | 95428/118287 [00:25<00:06, 3589.94it/s]
97%|█████████▋| 115226/118287 [00:29<00:00, 3682.32it/s]
98%|█████████▊| 115860/118287 [00:29<00:00, 3735.56it/s]
81%|████████ | 95788/118287 [00:25<00:06, 3572.15it/s]
98%|█████████▊| 115595/118287 [00:29<00:00, 3646.79it/s]
98%|█████████▊| 116237/118287 [00:29<00:00, 3733.49it/s]
81%|████████▏ | 96146/118287 [00:25<00:06, 3512.25it/s]
98%|█████████▊| 115995/118287 [00:30<00:00, 3743.52it/s]
99%|█████████▊| 116611/118287 [00:29<00:00, 3714.30it/s]
82%|████████▏ | 96504/118287 [00:26<00:06, 3526.40it/s]Done batching roidbs
[0308 18:58:47 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:47 @trainers.py:391] [HorovodTrainer] local rank=1
[0308 18:58:47 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
98%|█████████▊| 116374/118287 [00:30<00:00, 3750.40it/s]
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:47.295874 140655740700416 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
99%|█████████▉| 116991/118287 [00:30<00:00, 3732.10it/s]
82%|████████▏ | 96858/118287 [00:26<00:06, 3483.68it/s][0308 18:58:47 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:47.345530 140655740700416 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:47 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:47 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
99%|█████████▊| 116750/118287 [00:30<00:00, 3734.16it/s]
99%|█████████▉| 117365/118287 [00:30<00:00, 3688.03it/s][0308 18:58:47 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
82%|████████▏ | 97207/118287 [00:26<00:06, 3436.86it/s][0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:47 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
99%|█████████▉| 117124/118287 [00:30<00:00, 3713.31it/s]
100%|█████████▉| 117751/118287 [00:30<00:00, 3736.65it/s][0308 18:58:47 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:47 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
82%|████████▏ | 97552/118287 [00:26<00:06, 3394.00it/s][0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
99%|█████████▉| 117496/118287 [00:30<00:00, 3683.71it/s][0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
100%|█████████▉| 118126/118287 [00:30<00:00, 3616.72it/s][0308 18:58:47 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:47 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
83%|████████▎ | 97892/118287 [00:26<00:06, 3345.53it/s][0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
100%|██████████| 118287/118287 [00:30<00:00, 3888.47it/s][0308 18:58:47 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:30.5044sec.
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:47 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
100%|█████████▉| 117865/118287 [00:30<00:00, 3601.93it/s]
83%|████████▎ | 98258/118287 [00:26<00:05, 3427.91it/s][0308 18:58:47 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:58:47 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:47 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:47 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
100%|█████████▉| 118226/118287 [00:30<00:00, 3500.43it/s]
83%|████████▎ | 98606/118287 [00:26<00:05, 3441.03it/s]
100%|██████████| 118287/118287 [00:30<00:00, 3854.01it/s][0308 18:58:47 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:30.7709sec.
[0308 18:58:47 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:47 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:47 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:47 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
84%|████████▎ | 98951/118287 [00:26<00:05, 3384.77it/s][0308 18:58:47 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:47 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:47 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:47 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:58:47 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
84%|████████▍ | 99291/118287 [00:26<00:05, 3333.45it/s][0308 18:58:48 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
84%|████████▍ | 99642/118287 [00:26<00:05, 3384.09it/s]Done batching roidbs
[0308 18:58:48 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:48 @trainers.py:391] [HorovodTrainer] local rank=5
[0308 18:58:48 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:48 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:48.169555 139695895922432 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:48.219148 139695895922432 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:48 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
85%|████████▍ | 99992/118287 [00:27<00:05, 3413.38it/s][0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:48 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
85%|████████▍ | 100334/118287 [00:27<00:05, 3399.25it/s][0308 18:58:48 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:48 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:48 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
85%|████████▌ | 100696/118287 [00:27<00:05, 3461.76it/s][0308 18:58:48 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:58:48 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:48 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
85%|████████▌ | 101051/118287 [00:27<00:04, 3485.35it/s][0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:48 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:48 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:48 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:48 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
86%|████████▌ | 101400/118287 [00:27<00:04, 3442.33it/s][0308 18:58:48 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:48 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
86%|████████▌ | 101764/118287 [00:27<00:04, 3493.25it/s][0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
86%|████████▋ | 102114/118287 [00:27<00:04, 3436.53it/s][0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:48 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:48 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
87%|████████▋ | 102460/118287 [00:27<00:04, 3443.51it/s][0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:48 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:48 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:48 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:48 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
Done loading roidbs
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
87%|████████▋ | 102815/118287 [00:27<00:04, 3474.08it/s][0308 18:58:49 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:49 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:49 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
Done loading roidbs
[0308 18:58:49 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
87%|████████▋ | 103202/118287 [00:27<00:04, 3581.31it/s][0308 18:58:49 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:49 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:49 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:49 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
88%|████████▊ | 103562/118287 [00:28<00:04, 3530.61it/s][0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:49 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:49 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:49 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:49 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:58:49 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
88%|████████▊ | 103916/118287 [00:28<00:04, 3421.75it/s]Done batching roidbs
[0308 18:58:49 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
Done batching roidbs
[0308 18:58:49 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:49 @trainers.py:391] [HorovodTrainer] local rank=4
[0308 18:58:49 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:49 @trainers.py:391] [HorovodTrainer] local rank=6
Done batching roidbs
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:49 @trainers.py:391] [HorovodTrainer] local rank=2
[0308 18:58:49 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:49 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
[0308 18:58:49 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:49.395869 140106948318976 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:49.396498 140085798336256 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:49 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
[0308 18:58:49 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:49.407411 140134360606464 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:49 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:49 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:49 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
W0308 18:58:49.444191 140106948318976 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:49 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:49.446536 140085798336256 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:49 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:49.459798 140134360606464 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
88%|████████▊ | 104262/118287 [00:28<00:04, 3433.09it/s][0308 18:58:49 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:49 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:49 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:49 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
88%|████████▊ | 104611/118287 [00:28<00:03, 3447.38it/s][0308 18:58:49 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[0308 18:58:49 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:49 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[0308 18:58:49 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
89%|████████▊ | 104957/118287 [00:28<00:03, 3392.89it/s][0308 18:58:49 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:49 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:49 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
[0308 18:58:49 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
89%|████████▉ | 105315/118287 [00:28<00:03, 3444.88it/s][0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:49 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:49 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:58:49 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:49 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:49 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:49 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
89%|████████▉ | 105661/118287 [00:28<00:03, 3319.92it/s][0308 18:58:49 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:49 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:49 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:49 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:49 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
90%|████████▉ | 106023/118287 [00:28<00:03, 3401.54it/s][0308 18:58:49 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
90%|████████▉ | 106365/118287 [00:28<00:03, 3386.39it/s][0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:50 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
90%|█████████ | 106705/118287 [00:29<00:03, 3326.37it/s][0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:50 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:50 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
91%|█████████ | 107071/118287 [00:29<00:03, 3419.12it/s][0308 18:58:50 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:50 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
91%|█████████ | 107440/118287 [00:29<00:03, 3492.53it/s][0308 18:58:50 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:50 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:50 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:50 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[0308 18:58:50 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
91%|█████████ | 107800/118287 [00:29<00:02, 3519.96it/s][0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[0308 18:58:50 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[0308 18:58:50 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[0308 18:58:50 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[0308 18:58:50 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
91%|█████████▏| 108156/118287 [00:29<00:02, 3527.10it/s][0308 18:58:50 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
92%|█████████▏| 108524/118287 [00:29<00:02, 3563.59it/s][0308 18:58:50 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
92%|█████████▏| 108881/118287 [00:29<00:02, 3449.40it/s][0308 18:58:50 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
92%|█████████▏| 109228/118287 [00:29<00:02, 3411.32it/s][0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:50 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:50 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:50 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
93%|█████████▎| 109571/118287 [00:29<00:02, 3330.74it/s][0308 18:58:51 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
93%|█████████▎| 109914/118287 [00:29<00:02, 3357.78it/s][0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:58:51 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:51 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
93%|█████████▎| 110261/118287 [00:30<00:02, 3389.73it/s][0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:51 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
94%|█████████▎| 110601/118287 [00:30<00:02, 3341.70it/s][0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:51 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:51 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
94%|█████████▍| 110936/118287 [00:30<00:02, 3302.57it/s][0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:51 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
94%|█████████▍| 111294/118287 [00:30<00:02, 3380.89it/s][0308 18:58:51 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:51 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:51 @registry.py:125] rpn/box input: [None, 256, None, None]
94%|█████████▍| 111639/118287 [00:30<00:01, 3401.16it/s][0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:51 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:51 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[0308 18:58:51 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[0308 18:58:51 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:51 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:51 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:51 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:51 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
95%|█████████▍| 111980/118287 [00:30<00:01, 3371.31it/s][buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
95%|█████████▍| 112318/118287 [00:30<00:01, 3371.77it/s]
95%|█████████▌| 112656/118287 [00:30<00:01, 3343.02it/s][tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
96%|█████████▌| 112991/118287 [00:30<00:01, 3126.17it/s]
96%|█████████▌| 113328/118287 [00:31<00:01, 3194.63it/s]
96%|█████████▌| 113650/118287 [00:31<00:01, 3104.24it/s]
96%|█████████▋| 113967/118287 [00:31<00:01, 3121.16it/s]
97%|█████████▋| 114281/118287 [00:31<00:01, 3098.78it/s]Done batching roidbs
[0308 18:58:52 @train.py:577] Total passes of the training set is: 24.56
97%|█████████▋| 114613/118287 [00:31<00:01, 3161.18it/s]Done batching roidbs
[0308 18:58:52 @train.py:577] Total passes of the training set is: 24.56
[0308 18:58:52 @trainers.py:391] [HorovodTrainer] local rank=7
[0308 18:58:52 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:52.630372 139814253213440 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:52 @registry.py:125] conv0 input: [None, 3, None, None]
97%|█████████▋| 114931/118287 [00:31<00:01, 3156.51it/s][0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:52.687193 139814253213440 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:52 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:52 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:52 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
97%|█████████▋| 115248/118287 [00:31<00:00, 3142.99it/s][0308 18:58:52 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:52 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:52 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:52 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:52 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
98%|█████████▊| 115572/118287 [00:31<00:00, 3171.39it/s][0308 18:58:52 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:52 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:52 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:52 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:52 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
98%|█████████▊| 115931/118287 [00:31<00:00, 3286.26it/s][0308 18:58:52 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
98%|█████████▊| 116269/118287 [00:31<00:00, 3313.50it/s][0308 18:58:53 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
99%|█████████▊| 116610/118287 [00:32<00:00, 3340.74it/s][0308 18:58:53 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
99%|█████████▉| 116949/118287 [00:32<00:00, 3353.79it/s][0308 18:58:53 @trainers.py:391] [HorovodTrainer] local rank=0
[0308 18:58:53 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
WARNING: Logging before flag parsing goes to stderr.
W0308 18:58:53.322254 139697895950080 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:53 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:58:53 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:58:53.377158 139697895950080 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
99%|█████████▉| 117285/118287 [00:32<00:00, 3306.30it/s][0308 18:58:53 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:53 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:58:53 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:53 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
99%|█████████▉| 117617/118287 [00:32<00:00, 3302.53it/s][0308 18:58:53 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:53 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
100%|█████████▉| 117948/118287 [00:32<00:00, 3191.07it/s][0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:53 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:53 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
100%|█████████▉| 118269/118287 [00:32<00:00, 3157.02it/s][0308 18:58:53 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:53 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
100%|██████████| 118287/118287 [00:32<00:00, 3634.09it/s][0308 18:58:53 @timer.py:48] Load Groundtruth Boxes for train2017 finished, time:32.6350sec.
[0308 18:58:53 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:53 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:58:53 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:53 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:53 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:58:53 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:53 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:53 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:53 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:53 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:58:53 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:53 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:53 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:58:53 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:53 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:58:54 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:58:54 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:58:54 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:58:54 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:58:54 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:54 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:54 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:54 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:54 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:54 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:54 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:54 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:54 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:54 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:54 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[0308 18:58:54 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:54 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:54 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:54 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:54 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[0308 18:58:54 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:58:54 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[0308 18:58:54 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:55 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:58:55 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:55 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:58:55 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:55 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:58:55 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:58:55 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:55 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:58:55 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:58:55 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:58:55 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:58:55 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:58:55 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:58:55 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:58:55 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:58:55 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:58:55 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:58:55 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:58:55 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:58:55 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:58:55 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:58:55 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:58:55 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:58:55 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:58:55 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:58:55 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:58:55 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:58:55 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:58:55 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[0308 18:58:55 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:58:55 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:58:55 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:58:55 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:58:55 @registry.py:125] rpn input: [None, 256, None, None]
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[0308 18:58:55 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
Done loading roidbs
[0308 18:58:55 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:58:55 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:58:55 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:58:55 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:58:55 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:55 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:58:55 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:58:55 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:58:55 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:58:55 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:58:55 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:58:56 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:58:56 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:56 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:58:56 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:58:56 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:58:56 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:58:56 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:58:56 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
W0308 18:58:56.100846 140655740700416 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:58:56 @data.py:335] Filtered 1021 images which contain no non-crowd groudtruth boxes. Total #images for training: 117266
Batching roidbs
[0308 18:58:56 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:58:56 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:58:56 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:58:56 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:58:56 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:58:56 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:58:56 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:58:56 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:58:56 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:58:56 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:58:56 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:58:56 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:58:56 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:58:56 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
W0308 18:58:56.706800 140655740700416 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:58:57 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:58:57 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:58:57 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:58:57 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:58:57 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
W0308 18:58:57.173261 139695895922432 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:58:57 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:58:57 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:58:57 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:58:57 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:58:57 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:58:57 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:58:57 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:58:57 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:58:57 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:58:57 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:57 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:58:57 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:58:57 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:58:57 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
W0308 18:58:57.778473 139695895922432 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:58:57 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:58:57 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:58:57 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:58:57 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:58:58 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:58:58 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:58:58 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:58:58 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:58:58 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:58:58 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:58:58 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[0308 18:58:58 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:58:58 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:58:58 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:58:58 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:58:58 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:58:58 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:58:58 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:58:58 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:58:58 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:58:58 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[0308 18:58:58 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[0308 18:58:58 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:58:58 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:58:58 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:58:58 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:58:58 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
W0308 18:58:58.197804 140085798336256 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:58:58 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:58:58 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:58:58 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[0308 18:58:58 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:58:58 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:58:58 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
[0308 18:58:58 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:58:58 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:58:58 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
W0308 18:58:58.598326 140106948318976 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[0308 18:58:58 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:58:58 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
W0308 18:58:58.651162 140134360606464 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
W0308 18:58:58.803745 140085798336256 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[0308 18:58:58 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:58:58 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[0308 18:58:58 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:58:58 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
W0308 18:58:59.263675 140106948318976 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
W0308 18:58:59.287084 140134360606464 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
Done batching roidbs
[0308 18:59:00 @train.py:577] Total passes of the training set is: 24.56
[0308 18:59:00 @trainers.py:391] [HorovodTrainer] local rank=3
[0308 18:59:00 @input_source.py:220] Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
WARNING: Logging before flag parsing goes to stderr.
W0308 18:59:00.313378 140223030650624 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py:210: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:59:00 @registry.py:125] conv0 input: [None, 3, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:59:00.370148 140223030650624 deprecation.py:506] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1253: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
[0308 18:59:00 @registry.py:133] conv0 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] pool0 input: [None, 64, None, None]
[0308 18:59:00 @registry.py:133] pool0 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block0/conv1 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block0/conv1 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block0/conv2 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block0/conv2 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block0/conv3 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block0/conv3 output: [None, 256, None, None]
[0308 18:59:00 @registry.py:125] group0/block0/convshortcut input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block0/convshortcut output: [None, 256, None, None]
[0308 18:59:00 @registry.py:125] group0/block1/conv1 input: [None, 256, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block1/conv1 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block1/conv2 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block1/conv2 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block1/conv3 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:59:00 @registry.py:133] group0/block1/conv3 output: [None, 256, None, None]
[0308 18:59:00 @registry.py:125] group0/block2/conv1 input: [None, 256, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block2/conv1 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block2/conv2 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block2/conv2 output: [None, 64, None, None]
[0308 18:59:00 @registry.py:125] group0/block2/conv3 input: [None, 64, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group0/block2/conv3 output: [None, 256, None, None]
[0308 18:59:00 @registry.py:125] group1/block0/conv1 input: [None, 256, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group1/block0/conv1 output: [None, 128, None, None]
[0308 18:59:00 @registry.py:125] group1/block0/conv2 input: [None, 128, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group1/block0/conv2 output: [None, 128, None, None]
[0308 18:59:00 @registry.py:125] group1/block0/conv3 input: [None, 128, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group1/block0/conv3 output: [None, 512, None, None]
[0308 18:59:00 @registry.py:125] group1/block0/convshortcut input: [None, 256, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:00 @registry.py:133] group1/block0/convshortcut output: [None, 512, None, None]
[0308 18:59:00 @registry.py:125] group1/block1/conv1 input: [None, 512, None, None]
[0308 18:59:00 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:59:01 @registry.py:133] group1/block1/conv1 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block1/conv2 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group1/block1/conv2 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block1/conv3 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group1/block1/conv3 output: [None, 512, None, None]
[0308 18:59:01 @registry.py:125] group1/block2/conv1 input: [None, 512, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[0308 18:59:01 @registry.py:133] group1/block2/conv1 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block2/conv2 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:01 @registry.py:133] group1/block2/conv2 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block2/conv3 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group1/block2/conv3 output: [None, 512, None, None]
[0308 18:59:01 @registry.py:125] group1/block3/conv1 input: [None, 512, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group1/block3/conv1 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block3/conv2 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group1/block3/conv2 output: [None, 128, None, None]
[0308 18:59:01 @registry.py:125] group1/block3/conv3 input: [None, 128, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:59:01 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:59:01 @registry.py:133] group1/block3/conv3 output: [None, 512, None, None]
[0308 18:59:01 @registry.py:125] group2/block0/conv1 input: [None, 512, None, None]
[0308 18:59:01 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:59:01 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:59:01 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:59:01 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:59:01 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:59:01 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:59:01 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:59:01 @registry.py:133] group2/block0/conv1 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block0/conv2 input: [None, 256, None, None]
[0308 18:59:01 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:59:01 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:59:01 @registry.py:133] group2/block0/conv2 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block0/conv3 input: [None, 256, None, None]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:59:01 @registry.py:133] group2/block0/conv3 output: [None, 1024, None, None]
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:59:01 @registry.py:125] group2/block0/convshortcut input: [None, 512, None, None]
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group2/block0/convshortcut output: [None, 1024, None, None]
[0308 18:59:01 @registry.py:125] group2/block1/conv1 input: [None, 1024, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group2/block1/conv1 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block1/conv2 input: [None, 256, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:01 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:01 @registry.py:133] group2/block1/conv2 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block1/conv3 input: [None, 256, None, None]
[0308 18:59:01 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:01 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:01 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:01 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:01 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:01 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:01 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:01 @base.py:208] Setup callbacks graph ...
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group2/block1/conv3 output: [None, 1024, None, None]
[0308 18:59:01 @registry.py:125] group2/block2/conv1 input: [None, 1024, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:01 @registry.py:133] group2/block2/conv1 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block2/conv2 input: [None, 256, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[0308 18:59:01 @registry.py:133] group2/block2/conv2 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block2/conv3 input: [None, 256, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group2/block2/conv3 output: [None, 1024, None, None]
[0308 18:59:01 @registry.py:125] group2/block3/conv1 input: [None, 1024, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] group2/block3/conv1 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block3/conv2 input: [None, 256, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:59:01 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[0308 18:59:01 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:59:01 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[0308 18:59:01 @registry.py:133] group2/block3/conv2 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block3/conv3 input: [None, 256, None, None]
[0308 18:59:01 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:59:01 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[0308 18:59:01 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:59:01 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[0308 18:59:01 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:59:01 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:01 @registry.py:133] group2/block3/conv3 output: [None, 1024, None, None]
[0308 18:59:01 @registry.py:125] group2/block4/conv1 input: [None, 1024, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:01 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:59:01 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:59:01 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:59:01 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
[0308 18:59:01 @registry.py:133] group2/block4/conv1 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block4/conv2 input: [None, 256, None, None]
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
W0308 18:59:01.962667 139814253213440 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[0308 18:59:01 @registry.py:133] group2/block4/conv2 output: [None, 256, None, None]
[0308 18:59:01 @registry.py:125] group2/block4/conv3 input: [None, 256, None, None]
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[0308 18:59:01 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group2/block4/conv3 output: [None, 1024, None, None]
[0308 18:59:02 @registry.py:125] group2/block5/conv1 input: [None, 1024, None, None]
[0308 18:59:02 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:59:02 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:59:02 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:59:02 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:59:02 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:59:02 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:59:02 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:59:02 @registry.py:133] group2/block5/conv1 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] group2/block5/conv2 input: [None, 256, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:59:02 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:59:02 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:59:02 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[0308 18:59:02 @registry.py:133] group2/block5/conv2 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] group2/block5/conv3 input: [None, 256, None, None]
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[0308 18:59:02 @registry.py:133] group2/block5/conv3 output: [None, 1024, None, None]
[0308 18:59:02 @registry.py:125] group3/block0/conv1 input: [None, 1024, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[0308 18:59:02 @registry.py:133] group3/block0/conv1 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block0/conv2 input: [None, 512, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block0/conv2 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block0/conv3 input: [None, 512, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:59:02 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[0308 18:59:02 @registry.py:133] group3/block0/conv3 output: [None, 2048, None, None]
[0308 18:59:02 @registry.py:125] group3/block0/convshortcut input: [None, 1024, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block0/convshortcut output: [None, 2048, None, None]
[0308 18:59:02 @registry.py:125] group3/block1/conv1 input: [None, 2048, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block1/conv1 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block1/conv2 input: [None, 512, None, None]
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block1/conv2 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block1/conv3 input: [None, 512, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block1/conv3 output: [None, 2048, None, None]
[0308 18:59:02 @registry.py:125] group3/block2/conv1 input: [None, 2048, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] group3/block2/conv1 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block2/conv2 input: [None, 512, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:133] group3/block2/conv2 output: [None, 512, None, None]
[0308 18:59:02 @registry.py:125] group3/block2/conv3 input: [None, 512, None, None]
[0308 18:59:02 @batch_norm.py:164] WRN [BatchNorm] Using moving_mean/moving_variance in training.
[0308 18:59:02 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:59:02 @base.py:229] Creating the session ...
[0308 18:59:02 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:133] group3/block2/conv3 output: [None, 2048, None, None]
[0308 18:59:02 @registry.py:125] fpn input: [None, 256, None, None],[None, 512, None, None],[None, 1024, None, None],[None, 2048, None, None]
[0308 18:59:02 @registry.py:125] fpn/lateral_1x1_c2 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:59:02 @registry.py:133] fpn/lateral_1x1_c2 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/lateral_1x1_c3 input: [None, 512, None, None]
[0308 18:59:02 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:59:02 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:59:02 @registry.py:133] fpn/lateral_1x1_c3 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/lateral_1x1_c4 input: [None, 1024, None, None]
[0308 18:59:02 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:59:02 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
[0308 18:59:02 @registry.py:133] fpn/lateral_1x1_c4 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/lateral_1x1_c5 input: [None, 2048, None, None]
[0308 18:59:02 @registry.py:133] fpn/lateral_1x1_c5 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/upsample_lat5 input: [None, 256, None, None]
[0308 18:59:02 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:02 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
W0308 18:59:02.619998 139814253213440 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[0308 18:59:02 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:02 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:02 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:02 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:02 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:02 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:02 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:02 @base.py:208] Setup callbacks graph ...
[0308 18:59:02 @registry.py:133] fpn/upsample_lat5 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/upsample_lat4 input: [None, 256, None, None]
W0308 18:59:02.643932 139697895950080 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[0308 18:59:02 @registry.py:133] fpn/upsample_lat4 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/upsample_lat3 input: [None, 256, None, None]
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[0308 18:59:02 @registry.py:133] fpn/upsample_lat3 output: [None, 256, None, None]
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[0308 18:59:02 @registry.py:125] fpn/posthoc_3x3_p2 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn/posthoc_3x3_p2 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/posthoc_3x3_p3 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn/posthoc_3x3_p3 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/posthoc_3x3_p4 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn/posthoc_3x3_p4 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/posthoc_3x3_p5 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn/posthoc_3x3_p5 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] fpn/maxpool_p6 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn/maxpool_p6 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] fpn output: [None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None],[None, 256, None, None]
[0308 18:59:02 @registry.py:125] rpn input: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] rpn/conv0 input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] rpn/conv0 output: [None, 256, None, None]
[0308 18:59:02 @registry.py:125] rpn/class input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] rpn/class output: [None, 3, None, None]
[0308 18:59:02 @registry.py:125] rpn/box input: [None, 256, None, None]
[0308 18:59:02 @registry.py:133] rpn/box output: [None, 12, None, None]
[0308 18:59:02 @registry.py:133] rpn output: [None, None, None, 3],[None, 12, None, None]
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 0: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 0: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 0: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 0: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 1: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 1: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 1: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 1: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 2: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 2: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 2: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 2: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 3: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 3: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 3: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 3: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] scores, lvl 4: (?, 3, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] bbox_deltas (reshaped), lvl 4: (?, 12, ?, ?)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] im_info, lvl 4: (?, 2)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] anchors, lvl 4: (3, 4)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (0): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_boxes (1): (?, 5)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (0): (?,)
[buildtime_shape] [model_fpn.generate_fpn_proposals_batch_tf_op] proposal_scores (1): (?,)
[0308 18:59:02 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:59:02 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
W0308 18:59:03.309465 139697895950080 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[0308 18:59:03 @base.py:229] Creating the session ...
[0308 18:59:03 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:03 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:03 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:03 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:03 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:03 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:03 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:03 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:03 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:03 @base.py:208] Setup callbacks graph ...
[0308 18:59:04 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:04 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:04 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:04 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:04 @base.py:208] Setup callbacks graph ...
[0308 18:59:04 @base.py:229] Creating the session ...
[0308 18:59:04 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:04 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:04 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:04 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:04 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:04 @base.py:208] Setup callbacks graph ...
[0308 18:59:05 @base.py:229] Creating the session ...
[0308 18:59:05 @base.py:229] Creating the session ...
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:59:07 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:07 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:07 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:07 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:07 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:07 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:07 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:07 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:07 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:07 @base.py:208] Setup callbacks graph ...
[tshape] model_box.encode_bbox_target.boxes: (?, ?, ?, ?, ?)
[tshape] model_box.encode_bbox_target.anchors: (?, ?, ?, ?, ?)
[0308 18:59:08 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:08 @base.py:208] Setup callbacks graph ...
[0308 18:59:08 @base.py:229] Creating the session ...
[buildtime_shape] [proposal_metrics_batch] mean_of_mean_best_iou: ()
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=0: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=0: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] box_mask_for_image, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_images_row_indices, btch_idx=1: (?,)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [sample_fast_rcnn_targets_batch] single_image_ret_boxes, btch_idx=1: (?, 5)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:09 @registry.py:125] fastrcnn input: [None, 256, 7, 7]
[0308 18:59:09 @registry.py:125] fastrcnn/fc6 input: [None, 256, 7, 7]
[0308 18:59:09 @registry.py:133] fastrcnn/fc6 output: [None, 1024]
[0308 18:59:09 @registry.py:125] fastrcnn/fc7 input: [None, 1024]
[0308 18:59:09 @registry.py:133] fastrcnn/fc7 output: [None, 1024]
[0308 18:59:09 @registry.py:133] fastrcnn output: [None, 1024]
[buildtime_shape] [train.roi_heads] head_feature: (?, 1024)
[0308 18:59:09 @registry.py:125] fastrcnn/outputs input: [None, 1024]
[0308 18:59:09 @registry.py:125] fastrcnn/outputs/class input: [None, 1024]
[0308 18:59:09 @registry.py:133] fastrcnn/outputs/class output: [None, 81]
[0308 18:59:09 @registry.py:125] fastrcnn/outputs/box input: [None, 1024]
[0308 18:59:09 @summary.py:46] [MovingAverageSummary] 125 operations in collection 'MOVING_SUMMARY_OPS' will be run with session hooks.
[0308 18:59:09 @summary.py:93] Summarizing collection 'summaries' of size 128.
[0308 18:59:09 @registry.py:133] fastrcnn/outputs/box output: [None, 324]
[0308 18:59:09 @registry.py:133] fastrcnn/outputs output: [None, 81],[None, 81, 4]
self.training == True
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[tshape] model_box.encode_bbox_target.boxes: (?, 4)
[tshape] model_box.encode_bbox_target.anchors: (?, 4)
[buildtime_shape] [FastRCNNHeadBatch.losses] single_image_box_logits: (?, 81, 4)
[0308 18:59:09 @base.py:242] Graph Finalized.
[0308 18:59:09 @trainers.py:453] Rank 1 waiting for initialization broadcasting ...
labels Tensor("concat:0", shape=(?,), dtype=int64)
label_logits Tensor("concat_1:0", shape=(?, 81), dtype=float32)
fg_boxes Tensor("concat_2:0", shape=(?, 4), dtype=float32)
fg_box_logits Tensor("concat_3:0", shape=(?, 81, 4), dtype=float32)
[buildtime_shape] [tf_area_batch] boxes (raw): (?, 5)
[buildtime_shape] [tf_area_batch] boxes (processed): (?, 4)
[0308 18:59:10 @registry.py:125] maskrcnn input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:125] maskrcnn/fcn0 input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:133] maskrcnn/fcn0 output: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:125] maskrcnn/fcn1 input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:133] maskrcnn/fcn1 output: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:125] maskrcnn/fcn2 input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:133] maskrcnn/fcn2 output: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:125] maskrcnn/fcn3 input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:133] maskrcnn/fcn3 output: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:125] maskrcnn/deconv input: [None, 256, 14, 14]
[0308 18:59:10 @registry.py:133] maskrcnn/deconv output: [None, 256, 28, 28]
[0308 18:59:10 @registry.py:125] maskrcnn/conv input: [None, 256, 28, 28]
[0308 18:59:10 @registry.py:133] maskrcnn/conv output: [None, 80, 28, 28]
[0308 18:59:10 @registry.py:133] maskrcnn output: [None, 80, 28, 28]
W0308 18:59:10.170388 140223030650624 deprecation.py:506] From /home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/model_box.py:215: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
[buildtime_shape] [roi_heads, batch_idx 0] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [roi_heads, batch_idx 1] single_image_image_target_masks_for_fg: (?, 1, 28, 28)
[buildtime_shape] [maskrcnn_loss] mask_logits: (?, 80, 28, 28)
[buildtime_shape] [maskrcnn_loss] fg_labels: (?,)
[buildtime_shape] [maskrcnn_loss] fg_target_masks: (?, 28, 28)
[0308 18:59:10 @base.py:242] Graph Finalized.
[0308 18:59:10 @trainers.py:453] Rank 5 waiting for initialization broadcasting ...
[0308 18:59:10 @regularize.py:95] regularize_cost() found 63 variables to regularize.
[0308 18:59:10 @regularize.py:20] The following tensors will be regularized: group1/block0/conv1/W:0, group1/block0/conv2/W:0, group1/block0/conv3/W:0, group1/block0/convshortcut/W:0, group1/block1/conv1/W:0, group1/block1/conv2/W:0, group1/block1/conv3/W:0, group1/block2/conv1/W:0, group1/block2/conv2/W:0, group1/block2/conv3/W:0, group1/block3/conv1/W:0, group1/block3/conv2/W:0, group1/block3/conv3/W:0, group2/block0/conv1/W:0, group2/block0/conv2/W:0, group2/block0/conv3/W:0, group2/block0/convshortcut/W:0, group2/block1/conv1/W:0, group2/block1/conv2/W:0, group2/block1/conv3/W:0, group2/block2/conv1/W:0, group2/block2/conv2/W:0, group2/block2/conv3/W:0, group2/block3/conv1/W:0, group2/block3/conv2/W:0, group2/block3/conv3/W:0, group2/block4/conv1/W:0, group2/block4/conv2/W:0, group2/block4/conv3/W:0, group2/block5/conv1/W:0, group2/block5/conv2/W:0, group2/block5/conv3/W:0, group3/block0/conv1/W:0, group3/block0/conv2/W:0, group3/block0/conv3/W:0, group3/block0/convshortcut/W:0, group3/block1/conv1/W:0, group3/block1/conv2/W:0, group3/block1/conv3/W:0, group3/block2/conv1/W:0, group3/block2/conv2/W:0, group3/block2/conv3/W:0, fpn/lateral_1x1_c2/W:0, fpn/lateral_1x1_c3/W:0, fpn/lateral_1x1_c4/W:0, fpn/lateral_1x1_c5/W:0, fpn/posthoc_3x3_p2/W:0, fpn/posthoc_3x3_p3/W:0, fpn/posthoc_3x3_p4/W:0, fpn/posthoc_3x3_p5/W:0, rpn/conv0/W:0, rpn/class/W:0, rpn/box/W:0, fastrcnn/fc6/W:0, fastrcnn/fc7/W:0, fastrcnn/outputs/class/W:0, fastrcnn/outputs/box/W:0, maskrcnn/fcn0/W:0, maskrcnn/fcn1/W:0, maskrcnn/fcn2/W:0, maskrcnn/fcn3/W:0, maskrcnn/deconv/W:0, maskrcnn/conv/W:0
W0308 18:59:10.815016 140223030650624 deprecation.py:323] From /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
[0308 18:59:11 @base.py:242] Graph Finalized.
[0308 18:59:11 @trainers.py:453] Rank 6 waiting for initialization broadcasting ...
[0308 18:59:12 @base.py:242] Graph Finalized.
[0308 18:59:12 @trainers.py:453] Rank 2 waiting for initialization broadcasting ...
[0308 18:59:12 @base.py:242] Graph Finalized.
[0308 18:59:12 @trainers.py:453] Rank 4 waiting for initialization broadcasting ...
[0308 18:59:14 @base.py:229] Creating the session ...
[0308 18:59:15 @base.py:242] Graph Finalized.
[0308 18:59:15 @trainers.py:453] Rank 7 waiting for initialization broadcasting ...
[0308 18:59:16 @monitor.py:257] WRN logger directory was not set. Ignore TFEventWriter.
[0308 18:59:16 @monitor.py:298] WRN logger directory was not set. Ignore JSONWriter.
[0308 18:59:16 @model_utils.py:64] Trainable Variables:
name shape dim
------------------------------------- ------------------ --------
group1/block0/conv1/W:0 [1, 1, 256, 128] 32768
group1/block0/conv1/bn/gamma:0 [128] 128
group1/block0/conv1/bn/beta:0 [128] 128
group1/block0/conv2/W:0 [3, 3, 128, 128] 147456
group1/block0/conv2/bn/gamma:0 [128] 128
group1/block0/conv2/bn/beta:0 [128] 128
group1/block0/conv3/W:0 [1, 1, 128, 512] 65536
group1/block0/conv3/bn/gamma:0 [512] 512
group1/block0/conv3/bn/beta:0 [512] 512
group1/block0/convshortcut/W:0 [1, 1, 256, 512] 131072
group1/block0/convshortcut/bn/gamma:0 [512] 512
group1/block0/convshortcut/bn/beta:0 [512] 512
group1/block1/conv1/W:0 [1, 1, 512, 128] 65536
group1/block1/conv1/bn/gamma:0 [128] 128
group1/block1/conv1/bn/beta:0 [128] 128
group1/block1/conv2/W:0 [3, 3, 128, 128] 147456
group1/block1/conv2/bn/gamma:0 [128] 128
group1/block1/conv2/bn/beta:0 [128] 128
group1/block1/conv3/W:0 [1, 1, 128, 512] 65536
group1/block1/conv3/bn/gamma:0 [512] 512
group1/block1/conv3/bn/beta:0 [512] 512
group1/block2/conv1/W:0 [1, 1, 512, 128] 65536
group1/block2/conv1/bn/gamma:0 [128] 128
group1/block2/conv1/bn/beta:0 [128] 128
group1/block2/conv2/W:0 [3, 3, 128, 128] 147456
group1/block2/conv2/bn/gamma:0 [128] 128
group1/block2/conv2/bn/beta:0 [128] 128
group1/block2/conv3/W:0 [1, 1, 128, 512] 65536
group1/block2/conv3/bn/gamma:0 [512] 512
group1/block2/conv3/bn/beta:0 [512] 512
group1/block3/conv1/W:0 [1, 1, 512, 128] 65536
group1/block3/conv1/bn/gamma:0 [128] 128
group1/block3/conv1/bn/beta:0 [128] 128
group1/block3/conv2/W:0 [3, 3, 128, 128] 147456
group1/block3/conv2/bn/gamma:0 [128] 128
group1/block3/conv2/bn/beta:0 [128] 128
group1/block3/conv3/W:0 [1, 1, 128, 512] 65536
group1/block3/conv3/bn/gamma:0 [512] 512
group1/block3/conv3/bn/beta:0 [512] 512
group2/block0/conv1/W:0 [1, 1, 512, 256] 131072
group2/block0/conv1/bn/gamma:0 [256] 256
group2/block0/conv1/bn/beta:0 [256] 256
group2/block0/conv2/W:0 [3, 3, 256, 256] 589824
group2/block0/conv2/bn/gamma:0 [256] 256
group2/block0/conv2/bn/beta:0 [256] 256
group2/block0/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block0/conv3/bn/gamma:0 [1024] 1024
group2/block0/conv3/bn/beta:0 [1024] 1024
group2/block0/convshortcut/W:0 [1, 1, 512, 1024] 524288
group2/block0/convshortcut/bn/gamma:0 [1024] 1024
group2/block0/convshortcut/bn/beta:0 [1024] 1024
group2/block1/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block1/conv1/bn/gamma:0 [256] 256
group2/block1/conv1/bn/beta:0 [256] 256
group2/block1/conv2/W:0 [3, 3, 256, 256] 589824
group2/block1/conv2/bn/gamma:0 [256] 256
group2/block1/conv2/bn/beta:0 [256] 256
group2/block1/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block1/conv3/bn/gamma:0 [1024] 1024
group2/block1/conv3/bn/beta:0 [1024] 1024
group2/block2/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block2/conv1/bn/gamma:0 [256] 256
group2/block2/conv1/bn/beta:0 [256] 256
group2/block2/conv2/W:0 [3, 3, 256, 256] 589824
group2/block2/conv2/bn/gamma:0 [256] 256
group2/block2/conv2/bn/beta:0 [256] 256
group2/block2/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block2/conv3/bn/gamma:0 [1024] 1024
group2/block2/conv3/bn/beta:0 [1024] 1024
group2/block3/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block3/conv1/bn/gamma:0 [256] 256
group2/block3/conv1/bn/beta:0 [256] 256
group2/block3/conv2/W:0 [3, 3, 256, 256] 589824
group2/block3/conv2/bn/gamma:0 [256] 256
group2/block3/conv2/bn/beta:0 [256] 256
group2/block3/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block3/conv3/bn/gamma:0 [1024] 1024
group2/block3/conv3/bn/beta:0 [1024] 1024
group2/block4/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block4/conv1/bn/gamma:0 [256] 256
group2/block4/conv1/bn/beta:0 [256] 256
group2/block4/conv2/W:0 [3, 3, 256, 256] 589824
group2/block4/conv2/bn/gamma:0 [256] 256
group2/block4/conv2/bn/beta:0 [256] 256
group2/block4/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block4/conv3/bn/gamma:0 [1024] 1024
group2/block4/conv3/bn/beta:0 [1024] 1024
group2/block5/conv1/W:0 [1, 1, 1024, 256] 262144
group2/block5/conv1/bn/gamma:0 [256] 256
group2/block5/conv1/bn/beta:0 [256] 256
group2/block5/conv2/W:0 [3, 3, 256, 256] 589824
group2/block5/conv2/bn/gamma:0 [256] 256
group2/block5/conv2/bn/beta:0 [256] 256
group2/block5/conv3/W:0 [1, 1, 256, 1024] 262144
group2/block5/conv3/bn/gamma:0 [1024] 1024
group2/block5/conv3/bn/beta:0 [1024] 1024
group3/block0/conv1/W:0 [1, 1, 1024, 512] 524288
group3/block0/conv1/bn/gamma:0 [512] 512
group3/block0/conv1/bn/beta:0 [512] 512
group3/block0/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block0/conv2/bn/gamma:0 [512] 512
group3/block0/conv2/bn/beta:0 [512] 512
group3/block0/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block0/conv3/bn/gamma:0 [2048] 2048
group3/block0/conv3/bn/beta:0 [2048] 2048
group3/block0/convshortcut/W:0 [1, 1, 1024, 2048] 2097152
group3/block0/convshortcut/bn/gamma:0 [2048] 2048
group3/block0/convshortcut/bn/beta:0 [2048] 2048
group3/block1/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block1/conv1/bn/gamma:0 [512] 512
group3/block1/conv1/bn/beta:0 [512] 512
group3/block1/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block1/conv2/bn/gamma:0 [512] 512
group3/block1/conv2/bn/beta:0 [512] 512
group3/block1/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block1/conv3/bn/gamma:0 [2048] 2048
group3/block1/conv3/bn/beta:0 [2048] 2048
group3/block2/conv1/W:0 [1, 1, 2048, 512] 1048576
group3/block2/conv1/bn/gamma:0 [512] 512
group3/block2/conv1/bn/beta:0 [512] 512
group3/block2/conv2/W:0 [3, 3, 512, 512] 2359296
group3/block2/conv2/bn/gamma:0 [512] 512
group3/block2/conv2/bn/beta:0 [512] 512
group3/block2/conv3/W:0 [1, 1, 512, 2048] 1048576
group3/block2/conv3/bn/gamma:0 [2048] 2048
group3/block2/conv3/bn/beta:0 [2048] 2048
fpn/lateral_1x1_c2/W:0 [1, 1, 256, 256] 65536
fpn/lateral_1x1_c2/b:0 [256] 256
fpn/lateral_1x1_c3/W:0 [1, 1, 512, 256] 131072
fpn/lateral_1x1_c3/b:0 [256] 256
fpn/lateral_1x1_c4/W:0 [1, 1, 1024, 256] 262144
fpn/lateral_1x1_c4/b:0 [256] 256
fpn/lateral_1x1_c5/W:0 [1, 1, 2048, 256] 524288
fpn/lateral_1x1_c5/b:0 [256] 256
fpn/posthoc_3x3_p2/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p2/b:0 [256] 256
fpn/posthoc_3x3_p3/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p3/b:0 [256] 256
fpn/posthoc_3x3_p4/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p4/b:0 [256] 256
fpn/posthoc_3x3_p5/W:0 [3, 3, 256, 256] 589824
fpn/posthoc_3x3_p5/b:0 [256] 256
rpn/conv0/W:0 [3, 3, 256, 256] 589824
rpn/conv0/b:0 [256] 256
rpn/class/W:0 [1, 1, 256, 3] 768
rpn/class/b:0 [3] 3
rpn/box/W:0 [1, 1, 256, 12] 3072
rpn/box/b:0 [12] 12
fastrcnn/fc6/W:0 [12544, 1024] 12845056
fastrcnn/fc6/b:0 [1024] 1024
fastrcnn/fc7/W:0 [1024, 1024] 1048576
fastrcnn/fc7/b:0 [1024] 1024
fastrcnn/outputs/class/W:0 [1024, 81] 82944
fastrcnn/outputs/class/b:0 [81] 81
fastrcnn/outputs/box/W:0 [1024, 324] 331776
fastrcnn/outputs/box/b:0 [324] 324
maskrcnn/fcn0/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn0/b:0 [256] 256
maskrcnn/fcn1/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn1/b:0 [256] 256
maskrcnn/fcn2/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn2/b:0 [256] 256
maskrcnn/fcn3/W:0 [3, 3, 256, 256] 589824
maskrcnn/fcn3/b:0 [256] 256
maskrcnn/deconv/W:0 [2, 2, 256, 256] 262144
maskrcnn/deconv/b:0 [256] 256
maskrcnn/conv/W:0 [1, 1, 256, 80] 20480
maskrcnn/conv/b:0 [80] 80
Total #vars=168, #params=44175092, size=168.51MB
[0308 18:59:16 @base.py:160] WRN Callback PeriodicCallback-ModelSaver is chief-only, skipped.
[0308 18:59:16 @base.py:160] WRN Callback EstimatedTimeLeft is chief-only, skipped.
[0308 18:59:16 @base.py:160] WRN Callback SessionRunTimeout is chief-only, skipped.
[0308 18:59:16 @base.py:160] WRN Callback ThroughputTracker is chief-only, skipped.
[0308 18:59:16 @base.py:160] WRN Callback MovingAverageSummary is chief-only, skipped.
[0308 18:59:16 @base.py:160] WRN Callback MergeAllSummaries_RunWithOp is chief-only, skipped.
[0308 18:59:16 @base.py:208] Setup callbacks graph ...
[0308 18:59:17 @base.py:229] Creating the session ...
[0308 18:59:21 @base.py:235] Initializing the session ...
[0308 18:59:21 @sessinit.py:204] Variables to restore from dict: group3/block2/conv3/bn/mean/EMA:0, group3/block2/conv3/bn/gamma:0, group2/block3/conv2/bn/beta:0, group0/block1/conv1/W:0, group1/block0/convshortcut/bn/beta:0, group1/block1/conv1/bn/mean/EMA:0, group2/block0/conv2/bn/variance/EMA:0, group2/block5/conv2/bn/beta:0, group2/block1/conv1/bn/beta:0, group2/block0/conv2/bn/beta:0, group3/block1/conv2/bn/mean/EMA:0, group1/block2/conv1/bn/variance/EMA:0, group2/block1/conv1/W:0, group3/block0/conv3/bn/beta:0, group2/block3/conv1/bn/beta:0, group2/block5/conv2/bn/variance/EMA:0, group0/block2/conv1/bn/gamma:0, group1/block1/conv3/bn/variance/EMA:0, group0/block2/conv3/W:0, group2/block3/conv3/W:0, group2/block3/conv3/bn/mean/EMA:0, conv0/bn/beta:0, group2/block1/conv2/bn/variance/EMA:0, group0/block0/conv2/bn/gamma:0, group2/block3/conv1/bn/variance/EMA:0, group2/block1/conv3/bn/mean/EMA:0, group0/block2/conv3/bn/gamma:0, group0/block1/conv2/bn/gamma:0, group2/block2/conv2/bn/mean/EMA:0, group1/block0/convshortcut/bn/gamma:0, conv0/bn/mean/EMA:0, group0/block2/conv1/W:0, group0/block2/conv1/bn/mean/EMA:0, group2/block3/conv2/bn/variance/EMA:0, group0/block0/conv3/W:0, group1/block3/conv2/W:0, group3/block0/conv1/bn/variance/EMA:0, group3/block2/conv2/bn/beta:0, group1/block2/conv3/bn/mean/EMA:0, group2/block2/conv3/W:0, group1/block3/conv3/bn/variance/EMA:0, group0/block1/conv3/bn/variance/EMA:0, group1/block0/conv2/W:0, group1/block0/conv3/bn/variance/EMA:0, group1/block2/conv1/bn/mean/EMA:0, group2/block3/conv3/bn/beta:0, group1/block0/convshortcut/bn/mean/EMA:0, group1/block3/conv1/bn/mean/EMA:0, group0/block0/conv1/bn/mean/EMA:0, group1/block1/conv3/bn/gamma:0, group2/block5/conv2/bn/mean/EMA:0, group1/block3/conv2/bn/beta:0, group2/block0/convshortcut/bn/variance/EMA:0, group3/block0/convshortcut/bn/mean/EMA:0, group2/block1/conv2/bn/gamma:0, group3/block1/conv1/bn/mean/EMA:0, group3/block1/conv3/bn/variance/EMA:0, group3/block2/conv1/W:0, group0/block0/convshortcut/W:0, group2/block4/conv2/bn/beta:0, group1/block1/conv3/W:0, group3/block1/conv3/bn/beta:0, group2/block3/conv2/bn/gamma:0, group1/block2/conv3/bn/gamma:0, group0/block0/conv1/bn/gamma:0, group1/block0/conv3/bn/mean/EMA:0, group2/block1/conv3/bn/beta:0, group2/block0/conv3/bn/mean/EMA:0, group1/block3/conv2/bn/mean/EMA:0, group3/block0/conv2/W:0, group0/block2/conv3/bn/beta:0, group2/block4/conv2/bn/gamma:0, group3/block0/conv1/bn/beta:0, group1/block1/conv2/bn/variance/EMA:0, group3/block2/conv1/bn/gamma:0, group2/block0/conv2/bn/gamma:0, group0/block0/conv1/bn/variance/EMA:0, group2/block0/conv3/bn/variance/EMA:0, group3/block1/conv2/bn/beta:0, group3/block0/conv1/bn/gamma:0, group3/block0/conv2/bn/beta:0, group1/block1/conv2/bn/mean/EMA:0, group1/block0/conv1/bn/variance/EMA:0, group1/block2/conv1/bn/gamma:0, group2/block2/conv2/bn/gamma:0, group1/block0/conv2/bn/mean/EMA:0, group1/block2/conv2/bn/variance/EMA:0, group2/block0/convshortcut/bn/beta:0, group2/block4/conv3/bn/beta:0, group0/block1/conv1/bn/mean/EMA:0, group0/block0/conv3/bn/mean/EMA:0, group3/block2/conv2/bn/variance/EMA:0, group0/block1/conv3/W:0, group3/block1/conv1/bn/variance/EMA:0, group2/block0/conv1/bn/mean/EMA:0, group3/block1/conv1/bn/gamma:0, group2/block2/conv1/W:0, group2/block1/conv2/bn/beta:0, group3/block1/conv2/bn/variance/EMA:0, group1/block0/conv3/W:0, group2/block2/conv3/bn/beta:0, group3/block0/convshortcut/W:0, group2/block0/conv1/bn/gamma:0, group3/block0/convshortcut/bn/variance/EMA:0, group1/block0/convshortcut/W:0, group2/block0/conv2/bn/mean/EMA:0, group0/block1/conv1/bn/variance/EMA:0, group3/block2/conv1/bn/beta:0, group1/block3/conv1/bn/variance/EMA:0, group2/block5/conv2/W:0, group3/block2/conv1/bn/mean/EMA:0, group1/block2/conv2/bn/mean/EMA:0, group2/block0/conv1/bn/variance/EMA:0, group3/block1/conv1/bn/beta:0, group2/block0/conv3/bn/gamma:0, group2/block5/conv1/bn/variance/EMA:0, group3/block0/conv2/bn/gamma:0, group2/block4/conv3/bn/mean/EMA:0, group0/block0/convshortcut/bn/mean/EMA:0, group1/block1/conv3/bn/beta:0, group0/block2/conv1/bn/variance/EMA:0, group2/block0/convshortcut/bn/mean/EMA:0, group2/block5/conv3/W:0, group1/block0/conv2/bn/gamma:0, group0/block0/conv2/W:0, group3/block0/conv3/W:0, group1/block3/conv2/bn/gamma:0, group1/block3/conv1/W:0, group0/block0/conv3/bn/beta:0, group2/block1/conv3/bn/variance/EMA:0, group1/block2/conv2/bn/beta:0, group2/block3/conv1/W:0, group0/block1/conv3/bn/gamma:0, group3/block0/conv1/W:0, group1/block0/conv3/bn/beta:0, group0/block1/conv2/bn/variance/EMA:0, conv0/W:0, group0/block2/conv3/bn/variance/EMA:0, group2/block4/conv1/bn/variance/EMA:0, conv0/bn/gamma:0, group2/block2/conv1/bn/variance/EMA:0, group2/block3/conv3/bn/variance/EMA:0, group1/block2/conv3/W:0, group1/block0/conv1/W:0, group2/block5/conv1/bn/mean/EMA:0, group3/block0/conv3/bn/gamma:0, group0/block0/conv1/bn/beta:0, group0/block1/conv2/W:0, group3/block1/conv3/bn/gamma:0, group3/block2/conv3/bn/beta:0, group2/block5/conv3/bn/mean/EMA:0, group2/block0/conv3/bn/beta:0, group2/block2/conv2/W:0, group3/block1/conv2/bn/gamma:0, group0/block2/conv2/bn/mean/EMA:0, group2/block0/conv1/bn/beta:0, group1/block1/conv1/bn/variance/EMA:0, conv0/bn/variance/EMA:0, group3/block0/conv3/bn/mean/EMA:0, group3/block2/conv2/bn/mean/EMA:0, group2/block4/conv1/bn/gamma:0, group3/block0/convshortcut/bn/beta:0, group3/block2/conv2/bn/gamma:0, group3/block2/conv3/bn/variance/EMA:0, group3/block2/conv1/bn/variance/EMA:0, group0/block2/conv2/bn/gamma:0, group1/block2/conv1/bn/beta:0, group0/block1/conv1/bn/beta:0, group2/block5/conv3/bn/variance/EMA:0, group2/block4/conv1/bn/beta:0, group0/block0/conv2/bn/variance/EMA:0, group1/block3/conv3/bn/mean/EMA:0, group0/block0/conv3/bn/variance/EMA:0, group2/block5/conv1/bn/gamma:0, group1/block1/conv2/W:0, group2/block1/conv2/W:0, group1/block3/conv3/bn/gamma:0, group3/block0/conv2/bn/variance/EMA:0, group0/block0/conv2/bn/beta:0, group0/block2/conv3/bn/mean/EMA:0, group2/block4/conv2/W:0, group2/block1/conv2/bn/mean/EMA:0, group2/block2/conv2/bn/beta:0, group0/block0/conv1/W:0, group2/block4/conv3/W:0, group1/block3/conv2/bn/variance/EMA:0, group2/block2/conv3/bn/mean/EMA:0, group1/block3/conv3/bn/beta:0, group2/block1/conv1/bn/variance/EMA:0, group2/block3/conv2/W:0, group0/block1/conv3/bn/mean/EMA:0, group2/block2/conv1/bn/beta:0, group2/block2/conv2/bn/variance/EMA:0, group2/block0/convshortcut/bn/gamma:0, group0/block2/conv2/W:0, group0/block2/conv2/bn/beta:0, group2/block3/conv3/bn/gamma:0, group1/block0/conv1/bn/mean/EMA:0, group1/block2/conv3/bn/variance/EMA:0, group2/block0/conv2/W:0, group2/block2/conv3/bn/variance/EMA:0, group0/block0/conv2/bn/mean/EMA:0, group2/block0/conv3/W:0, group2/block4/conv1/bn/mean/EMA:0, group1/block3/conv1/bn/gamma:0, group3/block0/conv1/bn/mean/EMA:0, group1/block0/conv3/bn/gamma:0, group0/block2/conv1/bn/beta:0, group1/block2/conv2/W:0, group2/block5/conv1/W:0, group3/block1/conv1/W:0, group2/block3/conv1/bn/gamma:0, group0/block1/conv2/bn/beta:0, group3/block1/conv2/W:0, group2/block3/conv2/bn/mean/EMA:0, group0/block1/conv3/bn/beta:0, group2/block1/conv3/W:0, group2/block5/conv3/bn/gamma:0, group1/block0/conv2/bn/variance/EMA:0, group1/block1/conv3/bn/mean/EMA:0, group2/block4/conv2/bn/mean/EMA:0, group1/block1/conv1/bn/gamma:0, group2/block0/convshortcut/W:0, group2/block1/conv1/bn/gamma:0, group2/block2/conv1/bn/gamma:0, group3/block1/conv3/W:0, group2/block3/conv1/bn/mean/EMA:0, group0/block0/convshortcut/bn/beta:0, group2/block1/conv1/bn/mean/EMA:0, group2/block2/conv3/bn/gamma:0, group0/block1/conv2/bn/mean/EMA:0, group0/block0/convshortcut/bn/gamma:0, group3/block0/conv3/bn/variance/EMA:0, group2/block4/conv3/bn/variance/EMA:0, group2/block1/conv3/bn/gamma:0, group2/block4/conv3/bn/gamma:0, group1/block1/conv1/W:0, group1/block0/conv2/bn/beta:0, group0/block0/convshortcut/bn/variance/EMA:0, group1/block3/conv3/W:0, group2/block5/conv3/bn/beta:0, group1/block2/conv2/bn/gamma:0, group3/block1/conv3/bn/mean/EMA:0, group1/block1/conv1/bn/beta:0, group1/block2/conv3/bn/beta:0, group2/block5/conv2/bn/gamma:0, group3/block2/conv3/W:0, group2/block4/conv1/W:0, group2/block0/conv1/W:0, group1/block0/conv1/bn/gamma:0, group2/block5/conv1/bn/beta:0, group3/block0/conv2/bn/mean/EMA:0, group1/block0/convshortcut/bn/variance/EMA:0, group2/block4/conv2/bn/variance/EMA:0, group2/block2/conv1/bn/mean/EMA:0, group0/block2/conv2/bn/variance/EMA:0, group0/block1/conv1/bn/gamma:0, group1/block0/conv1/bn/beta:0, group0/block0/conv3/bn/gamma:0, group1/block1/conv2/bn/beta:0, group1/block1/conv2/bn/gamma:0, group3/block0/convshortcut/bn/gamma:0, group1/block3/conv1/bn/beta:0, group1/block2/conv1/W:0, group3/block2/conv2/W:0
[0308 18:59:21 @sessinit.py:87] WRN The following variables are in the graph, but not found in the dict: fastrcnn/fc6/W, fastrcnn/fc6/b, fastrcnn/fc7/W, fastrcnn/fc7/b, fastrcnn/outputs/box/W, fastrcnn/outputs/box/b, fastrcnn/outputs/class/W, fastrcnn/outputs/class/b, fpn/lateral_1x1_c2/W, fpn/lateral_1x1_c2/b, fpn/lateral_1x1_c3/W, fpn/lateral_1x1_c3/b, fpn/lateral_1x1_c4/W, fpn/lateral_1x1_c4/b, fpn/lateral_1x1_c5/W, fpn/lateral_1x1_c5/b, fpn/posthoc_3x3_p2/W, fpn/posthoc_3x3_p2/b, fpn/posthoc_3x3_p3/W, fpn/posthoc_3x3_p3/b, fpn/posthoc_3x3_p4/W, fpn/posthoc_3x3_p4/b, fpn/posthoc_3x3_p5/W, fpn/posthoc_3x3_p5/b, global_step, learning_rate, maskrcnn/conv/W, maskrcnn/conv/b, maskrcnn/deconv/W, maskrcnn/deconv/b, maskrcnn/fcn0/W, maskrcnn/fcn0/b, maskrcnn/fcn1/W, maskrcnn/fcn1/b, maskrcnn/fcn2/W, maskrcnn/fcn2/b, maskrcnn/fcn3/W, maskrcnn/fcn3/b, rpn/box/W, rpn/box/b, rpn/class/W, rpn/class/b, rpn/conv0/W, rpn/conv0/b
[0308 18:59:21 @sessinit.py:87] WRN The following variables are in the dict, but not found in the graph: linear/W, linear/b
[0308 18:59:21 @sessinit.py:217] Restoring 265 variables from dict ...
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 18:59:21.592200 139697895950080 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/tfutils/varmanip.py:106: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 18:59:24 @base.py:242] Graph Finalized.
[0308 18:59:24 @trainers.py:453] Rank 3 waiting for initialization broadcasting ...
[0308 18:59:34 @varmanip.py:102] WRN Variable group0/block0/convshortcut/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:34 @varmanip.py:102] WRN Variable group0/block1/conv2/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:41 @varmanip.py:102] WRN Variable group0/block2/conv3/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:46 @varmanip.py:102] WRN Variable group0/block0/conv2/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:46 @varmanip.py:102] WRN Variable conv0/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:48 @varmanip.py:102] WRN Variable group0/block0/conv1/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 18:59:53 @varmanip.py:102] WRN Variable group0/block2/conv1/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 19:00:03 @varmanip.py:102] WRN Variable group0/block0/conv3/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 19:00:16 @varmanip.py:102] WRN Variable group0/block1/conv3/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 19:00:20 @varmanip.py:102] WRN Variable group0/block2/conv2/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 19:00:40 @varmanip.py:102] WRN Variable group0/block1/conv1/W has dtype <dtype: 'float16'> but was given a value of dtype float32. Load it after downcasting!
[0308 19:01:01 @base.py:242] Graph Finalized.
[0308 19:01:01 @trainers.py:451] Broadcasting initialized variables ...
WARNING: One or more tensors were submitted to be reduced, gathered or broadcasted by subset of ranks and are waiting for remainder of ranks for more than 60 seconds. This may indicate that different ranks are trying to submit different tensors or that only subset of ranks is submitting tensors, which will cause deadlock.
Stalled ops:
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_pos_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level4_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c5_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p3_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p4_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p5_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_conv0_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_class_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc6_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc7_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_fg_accuracy_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_deconv_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_global_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_box_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p2_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_QueueInput_queue_size_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p5_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc6_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_maskrcnn_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_class_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn0_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc7_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c4_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn1_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_conv0_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn3_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_box_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p5_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_false_negative_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p4_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c3_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_box_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p2_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p3_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc7_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p4_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_conv0_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_pos_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_convshortcut_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc6_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p4_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn2_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_convshortcut_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_accuracy_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c4_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_convshortcut_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_conv0_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_Identity_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_box_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_box_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_deconv_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_class_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_class_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn2_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c2_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_fg_pixel_ratio_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c5_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p5_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_QueueInput_queue_size_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_class_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_conv_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_fg_accuracy_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_QueueInput_queue_size_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level3_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c3_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c4_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_conv0_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_convshortcut_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_box_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c4_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_accuracy_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_rpn_class_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_num_fg_label_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_num_fg_label_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_wd_cost_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn1_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_num_valid_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_learning_rate_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_maskrcnn_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_convshortcut_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_wd_cost_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_conv1_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_pos_accuracy_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_class_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_fg_accuracy_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_accuracy_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_conv0_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_accuracy_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_class_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_conv_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block1_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block4_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_pos_accuracy_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn3_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_fg_pixel_ratio_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_accuracy_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level4_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc7_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level3_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_num_fg_label_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_convshortcut_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_conv_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn0_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c2_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_deconv_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_box_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block5_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn0_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn0_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_Identity_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block3_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level4_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block1_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_Identity_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_variance_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level3_label_metrics_1_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level4_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_mask_fpn_map_rois_to_levels_batch_num_roi_level3_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_false_negative_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_maskrcnn_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_accuracy_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_fg_pixel_ratio_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_wd_cost_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_fastrcnn_losses_label_metrics_false_negative_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block0_conv3_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_num_valid_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_maskrcnn_loss_pos_accuracy_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv1_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block2_conv1_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level4_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_3_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_precision_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_fc6_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_posthoc_3x3_p2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level4_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level3_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level3_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_3_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_recall_iou0_3_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_conv0_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv1_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_best_iou_per_gt_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_best_iou_per_gt_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_sample_fast_rcnn_targets_batch_proposal_metrics_batch_best_iou_per_gt_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block0_convshortcut_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv3_bn_beta_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group2_block2_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block1_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_conv_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_deconv_b_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_pos_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_label_metrics_1_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_box_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_pos_anchor_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv3_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_multilevel_roi_align_batch_fpn_map_rois_to_levels_batch_num_roi_level3_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_conv0_bn_gamma_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_conv0_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_label_metrics_1_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_2_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block3_conv3_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_1_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv2_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv2_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_pos_anchor_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_num_valid_anchor_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_5_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_box_loss_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level2_box_loss_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block1_conv3_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_loss_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fastrcnn_outputs_box_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c5_b_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_fpn_lateral_1x1_c5_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level6_num_valid_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv2_W_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_2_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_2_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block2_conv1_bn_mean_EMA_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_5_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_recall_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level5_label_metrics_precision_th0_5_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_maskrcnn_fcn2_W_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_num_valid_anchor_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group3_block0_convshortcut_bn_gamma_Momentum_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_box_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_1_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_loss_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_1_local_step_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group1_block0_conv3_bn_beta_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_EMA_rpn_losses_batch_level4_label_metrics_1_recall_th0_1_biased_0 [missing ranks: 0]
horovod_broadcast/HorovodBroadcast_group0_block2_conv1_bn_mean_EMA_0 [missing ranks: 0]
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.403121 139695895922432 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.417641 140655740700416 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.419090 140085798336256 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.462747 139814253213440 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.466423 140223030650624 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.466780 140106948318976 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @concurrency.py:38] Starting EnqueueThread QueueInput/input_queue ...
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gradients_util.py:94: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
W0308 19:01:04.526553 140134360606464 deprecation.py:323] From /home/ubuntu/tensorpack-mask-rcnn/tensorpack/callbacks/param.py:79: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:04 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:05 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:05 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:05 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s][0308 19:01:07 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.003300
[0308 19:01:07 @param.py:158] [HyperParamSetter] At global_step=0, learning_rate is set to 0.010000
[0308 19:01:07 @base.py:274] Start Epoch 1 ...
0%| |0/15000[00:00<?,?it/s]ip-172-31-14-112:20669:20797 [0] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20669:20797 [0] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20669:20797 [0] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20669:20797 [0] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20669:20797 [0] NCCL INFO NET/Socket : 1 interfaces found
NCCL version 2.3.7+cuda10.0
ip-172-31-14-112:20669:20797 [0] NCCL INFO rank 0 nranks 8
ip-172-31-14-112:20673:20777 [4] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20673:20777 [4] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20673:20777 [4] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20673:20777 [4] NCCL INFO rank 4 nranks 8
ip-172-31-14-112:20670:20784 [1] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20670:20784 [1] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20670:20784 [1] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20670:20784 [1] NCCL INFO rank 1 nranks 8
ip-172-31-14-112:20671:20794 [2] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20671:20794 [2] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20672:20778 [3] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20672:20778 [3] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20671:20794 [2] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20671:20794 [2] NCCL INFO rank 2 nranks 8
ip-172-31-14-112:20676:20776 [7] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20676:20776 [7] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20675:20782 [6] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20675:20782 [6] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20675:20782 [6] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20675:20782 [6] NCCL INFO rank 6 nranks 8
ip-172-31-14-112:20672:20778 [3] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20672:20778 [3] NCCL INFO rank 3 nranks 8
ip-172-31-14-112:20674:20783 [5] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20674:20783 [5] NCCL INFO NET/IB : Using interface ens5 for sideband communication
ip-172-31-14-112:20674:20783 [5] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20674:20783 [5] NCCL INFO rank 5 nranks 8
ip-172-31-14-112:20676:20776 [7] NCCL INFO Using internal Network Socket
ip-172-31-14-112:20676:20776 [7] NCCL INFO rank 7 nranks 8
ip-172-31-14-112:20669:20797 [0] NCCL INFO comm 0x7f0d683c5f30 rank 0 nranks 8
[runtime_tensor] [train.py] total_cost 7.74276972
ip-172-31-14-112:20673:20777 [4] NCCL INFO comm 0x7f6ca43aa4d0 rank 4 nranks 8
ip-172-31-14-112:20673:20777 [4] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20673:20777 [4] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20670:20784 [1] NCCL INFO comm 0x7fec6c3c62c0 rank 1 nranks 8
ip-172-31-14-112:20670:20784 [1] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20670:20784 [1] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20672:20778 [3] NCCL INFO comm 0x7f87ac3f41a0 rank 3 nranks 8
ip-172-31-14-112:20672:20778 [3] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20672:20778 [3] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20674:20783 [5] NCCL INFO comm 0x7f0cf03ae500 rank 5 nranks 8
ip-172-31-14-112:20674:20783 [5] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20674:20783 [5] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20671:20794 [2] NCCL INFO comm 0x7f73083d7580 rank 2 nranks 8
ip-172-31-14-112:20671:20794 [2] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20671:20794 [2] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20675:20782 [6] NCCL INFO comm 0x7f67b83ae5c0 rank 6 nranks 8
ip-172-31-14-112:20676:20776 [7] NCCL INFO comm 0x7f28803af190 rank 7 nranks 8
ip-172-31-14-112:20675:20782 [6] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20675:20782 [6] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20676:20776 [7] NCCL INFO NET : Using interface ens5:172.31.14.112<0>
ip-172-31-14-112:20676:20776 [7] NCCL INFO NET/Socket : 1 interfaces found
ip-172-31-14-112:20671:20794 [2] NCCL INFO CUDA Dev 2, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20670:20784 [1] NCCL INFO CUDA Dev 1, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20672:20778 [3] NCCL INFO CUDA Dev 3, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20673:20777 [4] NCCL INFO CUDA Dev 4, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20675:20782 [6] NCCL INFO CUDA Dev 6, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20674:20783 [5] NCCL INFO CUDA Dev 5, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20676:20776 [7] NCCL INFO CUDA Dev 7, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20669:20797 [0] NCCL INFO CUDA Dev 0, IP Interfaces : ens5(PHB)
ip-172-31-14-112:20671:20794 [2] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20674:20783 [5] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20673:20777 [4] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20669:20797 [0] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20675:20782 [6] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20676:20776 [7] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20670:20784 [1] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20672:20778 [3] NCCL INFO NCCL_MIN_NRINGS set by environment to 8.
ip-172-31-14-112:20669:20797 [0] NCCL INFO Using 256 threads
ip-172-31-14-112:20669:20797 [0] NCCL INFO Min Comp Cap 7
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 00 : 0 1 2 3 7 5 6 4
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 01 : 0 2 6 7 4 5 1 3
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 02 : 0 3 1 5 4 7 6 2
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 03 : 0 3 2 1 5 6 7 4
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 04 : 0 4 6 5 7 3 2 1
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 05 : 0 4 7 6 5 1 2 3
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 06 : 0 1 2 3 7 5 6 4
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 07 : 0 2 6 7 4 5 1 3
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 08 : 0 3 1 5 4 7 6 2
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 09 : 0 3 2 1 5 6 7 4
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 10 : 0 4 6 5 7 3 2 1
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 11 : 0 4 7 6 5 1 2 3
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 00 : 4[4] -> 0[0] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 00 : 7[7] -> 5[5] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 00 : 2[2] -> 3[3] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 00 : 6[6] -> 4[4] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 00 : 0[0] -> 1[1] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 00 : 5[5] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 00 : 3[3] -> 7[7] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 00 : 1[1] -> 2[2] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 01 : 2[2] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 01 : 3[3] -> 0[0] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 01 : 4[4] -> 5[5] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 01 : 7[7] -> 4[4] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 01 : 6[6] -> 7[7] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 01 : 0[0] -> 2[2] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 01 : 1[1] -> 3[3] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 01 : 5[5] -> 1[1] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 02 : 7[7] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 02 : 3[3] -> 1[1] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 02 : 4[4] -> 7[7] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 02 : 2[2] -> 0[0] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 02 : 1[1] -> 5[5] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 02 : 0[0] -> 3[3] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 02 : 5[5] -> 4[4] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 02 : 6[6] -> 2[2] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 03 : 1[1] -> 5[5] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 03 : 0[0] -> 3[3] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 03 : 6[6] -> 7[7] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 03 : 7[7] -> 4[4] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 03 : 2[2] -> 1[1] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 03 : 3[3] -> 2[2] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 03 : 5[5] -> 6[6] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 03 : 4[4] -> 0[0] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 04 : 4[4] -> 6[6] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 04 : 5[5] -> 7[7] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 04 : 6[6] -> 5[5] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 04 : 7[7] -> 3[3] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 04 : 3[3] -> 2[2] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 04 : 0[0] -> 4[4] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 04 : 1[1] -> 0[0] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 04 : 2[2] -> 1[1] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 05 : 2[2] -> 3[3] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 05 : 1[1] -> 2[2] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 05 : 3[3] -> 0[0] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 05 : 5[5] -> 1[1] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 05 : 6[6] -> 5[5] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 05 : 7[7] -> 6[6] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 05 : 4[4] -> 7[7] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 05 : 0[0] -> 4[4] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 06 : 0[0] -> 1[1] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 06 : 1[1] -> 2[2] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 06 : 2[2] -> 3[3] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 06 : 5[5] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 06 : 3[3] -> 7[7] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 06 : 4[4] -> 0[0] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 06 : 6[6] -> 4[4] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 06 : 7[7] -> 5[5] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 07 : 6[6] -> 7[7] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 07 : 0[0] -> 2[2] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 07 : 4[4] -> 5[5] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 07 : 7[7] -> 4[4] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 07 : 3[3] -> 0[0] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 07 : 2[2] -> 6[6] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 07 : 5[5] -> 1[1] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 07 : 1[1] -> 3[3] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 08 : 4[4] -> 7[7] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 08 : 3[3] -> 1[1] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 08 : 2[2] -> 0[0] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 08 : 7[7] -> 6[6] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 08 : 6[6] -> 2[2] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 08 : 0[0] -> 3[3] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 08 : 1[1] -> 5[5] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 08 : 5[5] -> 4[4] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 09 : 7[7] -> 4[4] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 09 : 6[6] -> 7[7] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 09 : 0[0] -> 3[3] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 09 : 2[2] -> 1[1] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 09 : 1[1] -> 5[5] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 09 : 5[5] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 09 : 3[3] -> 2[2] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 09 : 4[4] -> 0[0] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 10 : 7[7] -> 3[3] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 10 : 6[6] -> 5[5] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 10 : 1[1] -> 0[0] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 10 : 0[0] -> 4[4] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 10 : 2[2] -> 1[1] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 10 : 5[5] -> 7[7] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 10 : 4[4] -> 6[6] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 10 : 3[3] -> 2[2] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO Ring 11 : 3[3] -> 0[0] via P2P/IPC
ip-172-31-14-112:20673:20777 [4] NCCL INFO Ring 11 : 4[4] -> 7[7] via P2P/IPC
ip-172-31-14-112:20674:20783 [5] NCCL INFO Ring 11 : 5[5] -> 1[1] via P2P/IPC
ip-172-31-14-112:20675:20782 [6] NCCL INFO Ring 11 : 6[6] -> 5[5] via P2P/IPC
ip-172-31-14-112:20676:20776 [7] NCCL INFO Ring 11 : 7[7] -> 6[6] via P2P/IPC
ip-172-31-14-112:20670:20784 [1] NCCL INFO Ring 11 : 1[1] -> 2[2] via P2P/IPC
ip-172-31-14-112:20671:20794 [2] NCCL INFO Ring 11 : 2[2] -> 3[3] via P2P/IPC
ip-172-31-14-112:20669:20797 [0] NCCL INFO Ring 11 : 0[0] -> 4[4] via P2P/IPC
ip-172-31-14-112:20672:20778 [3] NCCL INFO comm 0x7f87ac3f41a0 rank 3 nranks 8 - COMPLETE
ip-172-31-14-112:20676:20776 [7] NCCL INFO comm 0x7f28803af190 rank 7 nranks 8 - COMPLETE
ip-172-31-14-112:20673:20777 [4] NCCL INFO comm 0x7f6ca43aa4d0 rank 4 nranks 8 - COMPLETE
ip-172-31-14-112:20669:20797 [0] NCCL INFO comm 0x7f0d683c5f30 rank 0 nranks 8 - COMPLETE
ip-172-31-14-112:20674:20783 [5] NCCL INFO comm 0x7f0cf03ae500 rank 5 nranks 8 - COMPLETE
ip-172-31-14-112:20675:20782 [6] NCCL INFO comm 0x7f67b83ae5c0 rank 6 nranks 8 - COMPLETE
ip-172-31-14-112:20670:20784 [1] NCCL INFO comm 0x7fec6c3c62c0 rank 1 nranks 8 - COMPLETE
ip-172-31-14-112:20671:20794 [2] NCCL INFO comm 0x7f73083d7580 rank 2 nranks 8 - COMPLETE
ip-172-31-14-112:20669:20797 [0] NCCL INFO Launch mode Parallel
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[0308 19:01:27 @param.py:161] [HyperParamSetter] At global_step=1, learning_rate changes from 0.003300 to 0.003307
[runtime_tensor] [train.py] total_cost 2.68372798
[runtime_tensor] [train.py] total_cost 3.29999471
[runtime_tensor] [train.py] total_cost 2.37285805
[runtime_tensor] [train.py] total_cost 2.15923524
[runtime_tensor] [train.py] total_cost 1.79694939
[runtime_tensor] [train.py] total_cost 1.95457268
[runtime_tensor] [train.py] total_cost 1.6180402
[runtime_tensor] [train.py] total_cost 1.8047204
[runtime_tensor] [train.py] total_cost 2.04750919
[runtime_tensor] [train.py] total_cost 1.98510289
[runtime_tensor] [train.py] total_cost 2.89567876
[runtime_tensor] [train.py] total_cost 1.85854411
[runtime_tensor] [train.py] total_cost 2.44396544
[runtime_tensor] [train.py] total_cost 1.78461266
[runtime_tensor] [train.py] total_cost 1.38053155
[runtime_tensor] [train.py] total_cost 2.01208425
[runtime_tensor] [train.py] total_cost 1.5321486
[runtime_tensor] [train.py] total_cost 1.57560372
[runtime_tensor] [train.py] total_cost 2.14943457
[runtime_tensor] [train.py] total_cost 1.97888362
[runtime_tensor] [train.py] total_cost 1.65204453
[runtime_tensor] [train.py] total_cost 1.56024027
[runtime_tensor] [train.py] total_cost 1.87394798
[runtime_tensor] [train.py] total_cost 2.14857912
[runtime_tensor] [train.py] total_cost 2.6338563
[runtime_tensor] [train.py] total_cost 1.66367006
[runtime_tensor] [train.py] total_cost 1.69520748
[runtime_tensor] [train.py] total_cost 1.51978779
[runtime_tensor] [train.py] total_cost 1.52646828
[runtime_tensor] [train.py] total_cost 1.65277588
[runtime_tensor] [train.py] total_cost 2.66609097
[runtime_tensor] [train.py] total_cost 2.10883
[runtime_tensor] [train.py] total_cost 1.48919618
[runtime_tensor] [train.py] total_cost 1.50616884
[runtime_tensor] [train.py] total_cost 1.49903727
[runtime_tensor] [train.py] total_cost 1.69256687
[runtime_tensor] [train.py] total_cost 1.96962976
[runtime_tensor] [train.py] total_cost 1.7483077
[runtime_tensor] [train.py] total_cost 1.7994194
[runtime_tensor] [train.py] total_cost 1.51916134
[runtime_tensor] [train.py] total_cost 1.50133681
[runtime_tensor] [train.py] total_cost 1.60936475
[runtime_tensor] [train.py] total_cost 1.39384103
[runtime_tensor] [train.py] total_cost 4.32952309
[runtime_tensor] [train.py] total_cost 2.29733944
[runtime_tensor] [train.py] total_cost 2.75384903
[runtime_tensor] [train.py] total_cost 1.92965019
[runtime_tensor] [train.py] total_cost 2.23456717
[runtime_tensor] [train.py] total_cost 1.83206916
[runtime_tensor] [train.py] total_cost 2.06228161
[runtime_tensor] [train.py] total_cost 1.77524638
[runtime_tensor] [train.py] total_cost 2.49890494
[runtime_tensor] [train.py] total_cost 1.82528448
[runtime_tensor] [train.py] total_cost 2.19772911
[runtime_tensor] [train.py] total_cost 1.49935699
[runtime_tensor] [train.py] total_cost 2.32633138
[runtime_tensor] [train.py] total_cost 2.20369101
[runtime_tensor] [train.py] total_cost 1.68592381
[runtime_tensor] [train.py] total_cost 1.70486045
[runtime_tensor] [train.py] total_cost 2.13867712
[runtime_tensor] [train.py] total_cost 1.70506871
[runtime_tensor] [train.py] total_cost 2.68161631
[runtime_tensor] [train.py] total_cost 1.49807453
[runtime_tensor] [train.py] total_cost 1.6216445
[runtime_tensor] [train.py] total_cost 1.4256649
[runtime_tensor] [train.py] total_cost 1.62524271
[runtime_tensor] [train.py] total_cost 1.51781106
[runtime_tensor] [train.py] total_cost 1.49771595
[runtime_tensor] [train.py] total_cost 1.6821034
[runtime_tensor] [train.py] total_cost 1.51543331
[runtime_tensor] [train.py] total_cost 1.75046885
[runtime_tensor] [train.py] total_cost 2.09669566
[runtime_tensor] [train.py] total_cost 1.54705167
[runtime_tensor] [train.py] total_cost 2.07160735
[runtime_tensor] [train.py] total_cost 1.81216621
[runtime_tensor] [train.py] total_cost 3.31781292
[runtime_tensor] [train.py] total_cost 1.65445542
[runtime_tensor] [train.py] total_cost 2.82713652
[runtime_tensor] [train.py] total_cost 2.55543518
[runtime_tensor] [train.py] total_cost 1.65127409
[runtime_tensor] [train.py] total_cost 1.86816692
[runtime_tensor] [train.py] total_cost 1.98674822
[runtime_tensor] [train.py] total_cost 1.8982687
[runtime_tensor] [train.py] total_cost 2.18057346
[runtime_tensor] [train.py] total_cost 1.66095722
[runtime_tensor] [train.py] total_cost 1.46637034
[runtime_tensor] [train.py] total_cost 1.43194032
[runtime_tensor] [train.py] total_cost 3.3553946
[runtime_tensor] [train.py] total_cost 1.47296846
[runtime_tensor] [train.py] total_cost 2.14104986
[runtime_tensor] [train.py] total_cost 1.2747128
[runtime_tensor] [train.py] total_cost 1.44938612
[runtime_tensor] [train.py] total_cost 2.49776793
[runtime_tensor] [train.py] total_cost 1.5389297
[runtime_tensor] [train.py] total_cost 1.80390501
[runtime_tensor] [train.py] total_cost 1.86149466
[runtime_tensor] [train.py] total_cost 1.52676535
[runtime_tensor] [train.py] total_cost 1.80225301
1%| |99/15000[01:00<2:30:57, 1.65it/s]
1%| |99/15000[01:00<2:30:58, 1.65it/s]
1%| |99/15000[01:00<2:30:45, 1.65it/s]
1%| |99/15000[01:00<2:31:18, 1.64it/s]
1%| |99/15000[01:00<2:31:13, 1.64it/s]
1%| |99/15000[01:00<2:31:13, 1.64it/s][runtime_tensor] [train.py] total_cost 1.56066203
1%| |100/15000[01:00<2:29:18, 1.66it/s][runtime_tensor] [train.py] total_cost 3.16070533
[runtime_tensor] [train.py] total_cost 1.55273366
[runtime_tensor] [train.py] total_cost 2.39772511
[runtime_tensor] [train.py] total_cost 1.77676845
[runtime_tensor] [train.py] total_cost 1.80637848
[runtime_tensor] [train.py] total_cost 1.73814237
[runtime_tensor] [train.py] total_cost 1.82725048
[runtime_tensor] [train.py] total_cost 1.67076957
[runtime_tensor] [train.py] total_cost 1.5470376
[runtime_tensor] [train.py] total_cost 2.07420778
[runtime_tensor] [train.py] total_cost 2.45469379
1%| |111/15000[01:00<2:14:22, 1.85it/s][runtime_tensor] [train.py] total_cost 1.61869931
[runtime_tensor] [train.py] total_cost 1.47121203
[runtime_tensor] [train.py] total_cost 1.80055571
[runtime_tensor] [train.py] total_cost 1.51263833
[runtime_tensor] [train.py] total_cost 1.99709439
[runtime_tensor] [train.py] total_cost 1.80661726
[runtime_tensor] [train.py] total_cost 1.53217459
[runtime_tensor] [train.py] total_cost 1.87826085
[runtime_tensor] [train.py] total_cost 2.2569
[runtime_tensor] [train.py] total_cost 1.73720837
[runtime_tensor] [train.py] total_cost 1.3138231
[runtime_tensor] [train.py] total_cost 1.55934024
[runtime_tensor] [train.py] total_cost 3.50098944
[runtime_tensor] [train.py] total_cost 1.82770824
[runtime_tensor] [train.py] total_cost 1.63414836
[runtime_tensor] [train.py] total_cost 2.07247
[runtime_tensor] [train.py] total_cost 2.79369879
[runtime_tensor] [train.py] total_cost 1.60313714
[runtime_tensor] [train.py] total_cost 1.6643703
[runtime_tensor] [train.py] total_cost 1.72318578
[runtime_tensor] [train.py] total_cost 1.45365429
[runtime_tensor] [train.py] total_cost 1.58793759
[runtime_tensor] [train.py] total_cost 1.62271953
[runtime_tensor] [train.py] total_cost 1.78072798
[runtime_tensor] [train.py] total_cost 1.6491847
[runtime_tensor] [train.py] total_cost 1.50066388
[runtime_tensor] [train.py] total_cost 1.76127195
[runtime_tensor] [train.py] total_cost 2.9022522
[runtime_tensor] [train.py] total_cost 1.80746269
[runtime_tensor] [train.py] total_cost 1.81901264
[runtime_tensor] [train.py] total_cost 1.92828906
[runtime_tensor] [train.py] total_cost 1.69186568
[runtime_tensor] [train.py] total_cost 1.87945437
[runtime_tensor] [train.py] total_cost 1.77583015
[runtime_tensor] [train.py] total_cost 1.73773742
[runtime_tensor] [train.py] total_cost 1.65560842
[runtime_tensor] [train.py] total_cost 1.37663341
[runtime_tensor] [train.py] total_cost 1.37293553
[runtime_tensor] [train.py] total_cost 2.37522125
[runtime_tensor] [train.py] total_cost 1.45609069
[runtime_tensor] [train.py] total_cost 8.68362331
[runtime_tensor] [train.py] total_cost 1.42834663
[runtime_tensor] [train.py] total_cost 1.98457
[runtime_tensor] [train.py] total_cost 2.56650066
[runtime_tensor] [train.py] total_cost 1.96816754
[runtime_tensor] [train.py] total_cost 2.35487986
[runtime_tensor] [train.py] total_cost 1.68015075
[runtime_tensor] [train.py] total_cost 2.64335108
[runtime_tensor] [train.py] total_cost 2.05562544
[runtime_tensor] [train.py] total_cost 2.28359556
[runtime_tensor] [train.py] total_cost 1.60458016
[runtime_tensor] [train.py] total_cost 1.62639725
[runtime_tensor] [train.py] total_cost 3.04388165
[runtime_tensor] [train.py] total_cost 2.22289658
[runtime_tensor] [train.py] total_cost 1.56351399
[runtime_tensor] [train.py] total_cost 1.52321053
[runtime_tensor] [train.py] total_cost 1.73867118
[runtime_tensor] [train.py] total_cost 1.46658468
[runtime_tensor] [train.py] total_cost 3.40237284
[runtime_tensor] [train.py] total_cost 1.92706013
[runtime_tensor] [train.py] total_cost 3.33335638
[runtime_tensor] [train.py] total_cost 2.82642603
[runtime_tensor] [train.py] total_cost 2.48535872
[runtime_tensor] [train.py] total_cost 1.65020025
[runtime_tensor] [train.py] total_cost 1.8403616
[runtime_tensor] [train.py] total_cost 1.76992881
[runtime_tensor] [train.py] total_cost 1.70384812
[runtime_tensor] [train.py] total_cost 1.49547684
[runtime_tensor] [train.py] total_cost 3.52192569
[runtime_tensor] [train.py] total_cost 1.84280682
[runtime_tensor] [train.py] total_cost 1.95146108
[runtime_tensor] [train.py] total_cost 2.20358682
[runtime_tensor] [train.py] total_cost 2.44687843
[runtime_tensor] [train.py] total_cost 2.1141367
[runtime_tensor] [train.py] total_cost 1.78464508
[runtime_tensor] [train.py] total_cost 1.78705359
[runtime_tensor] [train.py] total_cost 1.43794358
[runtime_tensor] [train.py] total_cost 1.41164923
[runtime_tensor] [train.py] total_cost 1.69273233
[runtime_tensor] [train.py] total_cost 1.87850595
[runtime_tensor] [train.py] total_cost 1.74243188
[runtime_tensor] [train.py] total_cost 1.76256025
[runtime_tensor] [train.py] total_cost 1.60745418
[runtime_tensor] [train.py] total_cost 1.24730587
[runtime_tensor] [train.py] total_cost 1.69991541
1%|1 |195/15000[01:20<2:30:20, 1.64it/s]
1%|1 |196/15000[01:20<2:30:14, 1.64it/s]
1%|1 |196/15000[01:20<2:30:14, 1.64it/s][runtime_tensor] [train.py] total_cost 1.83049726
1%|1 |196/15000[01:20<2:29:59, 1.65it/s]
1%|1 |196/15000[01:20<2:29:58, 1.65it/s]
1%|1 |197/15000[01:20<2:29:45, 1.65it/s][runtime_tensor] [train.py] total_cost 1.5638783
1%|1 |198/15000[01:20<2:28:19, 1.66it/s][runtime_tensor] [train.py] total_cost 1.926512
[runtime_tensor] [train.py] total_cost 1.86500323
[runtime_tensor] [train.py] total_cost 1.62726
[runtime_tensor] [train.py] total_cost 1.66358805
[runtime_tensor] [train.py] total_cost 1.85985184
[runtime_tensor] [train.py] total_cost 1.66700244
[runtime_tensor] [train.py] total_cost 1.71822977
[runtime_tensor] [train.py] total_cost 1.9840827
[runtime_tensor] [train.py] total_cost 1.64785361
[runtime_tensor] [train.py] total_cost 1.77589238
[runtime_tensor] [train.py] total_cost 1.73721886
1%|1 |209/15000[01:20<2:13:29, 1.85it/s][runtime_tensor] [train.py] total_cost 1.43297899
[runtime_tensor] [train.py] total_cost 2.76672029
[runtime_tensor] [train.py] total_cost 1.87888288
[runtime_tensor] [train.py] total_cost 2.87847614
[runtime_tensor] [train.py] total_cost 2.39872694
[runtime_tensor] [train.py] total_cost 1.94121885
[runtime_tensor] [train.py] total_cost 2.03311753
[runtime_tensor] [train.py] total_cost 1.53941274
[runtime_tensor] [train.py] total_cost 1.80498338
[runtime_tensor] [train.py] total_cost 1.41814756
[runtime_tensor] [train.py] total_cost 1.79106951
[runtime_tensor] [train.py] total_cost 1.66424692
[runtime_tensor] [train.py] total_cost 2.55854321
[runtime_tensor] [train.py] total_cost 1.78778386
[runtime_tensor] [train.py] total_cost 1.55733585
[runtime_tensor] [train.py] total_cost 1.83205438
[runtime_tensor] [train.py] total_cost 2.90235877
[runtime_tensor] [train.py] total_cost 3.38499498
[runtime_tensor] [train.py] total_cost 1.79549313
[runtime_tensor] [train.py] total_cost 1.89728928
[runtime_tensor] [train.py] total_cost 1.66043377
[runtime_tensor] [train.py] total_cost 2.03973913
[runtime_tensor] [train.py] total_cost 1.82356048
[runtime_tensor] [train.py] total_cost 3.80715895
[runtime_tensor] [train.py] total_cost 2.65155888
[runtime_tensor] [train.py] total_cost 2.27582145
[runtime_tensor] [train.py] total_cost 1.64307356
[runtime_tensor] [train.py] total_cost 1.54805899
[runtime_tensor] [train.py] total_cost 1.94195819
[runtime_tensor] [train.py] total_cost 1.69536543
[runtime_tensor] [train.py] total_cost 1.79404831
[runtime_tensor] [train.py] total_cost 1.93038428
[runtime_tensor] [train.py] total_cost 1.80141032
[runtime_tensor] [train.py] total_cost 1.6861937
[runtime_tensor] [train.py] total_cost 1.4884491
[runtime_tensor] [train.py] total_cost 1.80019748
[runtime_tensor] [train.py] total_cost 1.54179
[runtime_tensor] [train.py] total_cost 1.35995579
[runtime_tensor] [train.py] total_cost 2.17170811
[runtime_tensor] [train.py] total_cost 1.69693089
[runtime_tensor] [train.py] total_cost 1.82187724
[runtime_tensor] [train.py] total_cost 1.36780667
[runtime_tensor] [train.py] total_cost 1.76488447
[runtime_tensor] [train.py] total_cost 1.70155907
[runtime_tensor] [train.py] total_cost 1.52673888
[runtime_tensor] [train.py] total_cost 1.95993662
[runtime_tensor] [train.py] total_cost 2.06336546
[runtime_tensor] [train.py] total_cost 1.86459255
[runtime_tensor] [train.py] total_cost 2.13582587
[runtime_tensor] [train.py] total_cost 2.02194357
[runtime_tensor] [train.py] total_cost 1.74479055
[runtime_tensor] [train.py] total_cost 2.10706067
[runtime_tensor] [train.py] total_cost 1.59439
[runtime_tensor] [train.py] total_cost 1.64635122
[runtime_tensor] [train.py] total_cost 1.44585669
[runtime_tensor] [train.py] total_cost 1.55375981
[runtime_tensor] [train.py] total_cost 1.55544639
[runtime_tensor] [train.py] total_cost 1.46667445
[runtime_tensor] [train.py] total_cost 3.45109248
[runtime_tensor] [train.py] total_cost 1.70504546
[runtime_tensor] [train.py] total_cost 1.43916738
[runtime_tensor] [train.py] total_cost 3.05307484
[runtime_tensor] [train.py] total_cost 1.79923809
[runtime_tensor] [train.py] total_cost 2.31075931
[runtime_tensor] [train.py] total_cost 3.37721586
[runtime_tensor] [train.py] total_cost 2.4738121
[runtime_tensor] [train.py] total_cost 2.27788806
[runtime_tensor] [train.py] total_cost 1.97916532
[runtime_tensor] [train.py] total_cost 2.04248357
[runtime_tensor] [train.py] total_cost 3.59475327
[runtime_tensor] [train.py] total_cost 1.84412038
[runtime_tensor] [train.py] total_cost 2.67348576
[runtime_tensor] [train.py] total_cost 2.93339229
2019-03-08 19:02:43.530004: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2%|1 |282/15000[01:38<1:25:20, 2.87it/s]2019-03-08 19:02:43.543948: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2019-03-08 19:02:43.554374: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2%|1 |282/15000[01:38<1:25:21, 2.87it/s]2019-03-08 19:02:43.559896: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2019-03-08 19:02:43.563595: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2019-03-08 19:02:43.563752: F tensorflow/stream_executor/gpu/gpu_timer.cc:65] Check failed: start_event_ != nullptr && stop_event_ != nullptr
[ip-172-31-14-112:20673] *** Process received signal ***
[ip-172-31-14-112:20673] Signal: Aborted (6)
[ip-172-31-14-112:20673] Signal code: (-6)
[ip-172-31-14-112:20673] [ 0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x11390)[0x7f6d30a12390]
[ip-172-31-14-112:20673] [ 1] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x38)[0x7f6d3066c428]
[ip-172-31-14-112:20673] [ 2] /lib/x86_64-linux-gnu/libc.so.6(abort+0x16a)[0x7f6d3066e02a]
[ip-172-31-14-112:20673] [ 3] 2019-03-08 19:02:43.564272: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2019-03-08 19:02:43.564412: F tensorflow/stream_executor/gpu/gpu_timer.cc:65] Check failed: start_event_ != nullptr && stop_event_ != nullptr
[ip-172-31-14-112:20674] *** Process received signal ***
[ip-172-31-14-112:20674] Signal: Aborted (6)
[ip-172-31-14-112:20674] Signal code: (-6)
[ip-172-31-14-112:20674] [ 0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x11390)[0x7f0d7bff5390]
[ip-172-31-14-112:20674] [ 1] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x38)[0x7f0d7bc4f428]
[ip-172-31-14-112:20674] [ 2] /lib/x86_64-linux-gnu/libc.so.6(abort+0x16a)[0x7f0d7bc5102a]
[ip-172-31-14-112:20674] [ 3] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so(+0x6c66fb4)[0x7f6d12b85fb4]
[ip-172-31-14-112:20673] [ 4] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZNK15stream_executor3gpu8GpuTimer22GetElapsedMillisecondsEv+0x97)[0x7f6d0b98f507]
[ip-172-31-14-112:20673] [ 5] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so(+0x6c66fb4)[0x7f0d5e168fb4]
[ip-172-31-14-112:20674] [ 4] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZNK15stream_executor3gpu8GpuTimer12MicrosecondsEv+0x9)[0x7f6d0b8f8959]
[ip-172-31-14-112:20673] [ 6] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZNK15stream_executor3gpu8GpuTimer22GetElapsedMillisecondsEv+0x97)[0x7f0d56f72507]
[ip-172-31-14-112:20674] [ 5] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZNK15stream_executor3gpu8GpuTimer12MicrosecondsEv+0x9)[0x7f0d56edb959]
[ip-172-31-14-112:20674] [ 6] 2019-03-08 19:02:43.566607: F tensorflow/stream_executor/gpu/gpu_timer.cc:65] Check failed: start_event_ != nullptr && stop_event_ != nullptr
2%|1 |282/15000[01:38<1:25:16, 2.88it/s]2019-03-08 19:02:43.566757: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so(_ZN10tensorflow10BiasGradOpIN5Eigen9GpuDeviceENS1_4halfEE7ComputeEPNS_15OpKernelContextE+0x33a)[0x7f6d0fa952da]
[ip-172-31-14-112:20673] [ 7] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZN10tensorflow13BaseGPUDevice13ComputeHelperEPNS_8OpKernelEPNS_15OpKernelContextE+0x48a)[0x7f6d0b46aa6a]
[ip-172-31-14-112:20673] [ 8] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZN10tensorflow13BaseGPUDevice7ComputeEPNS_8OpKernelEPNS_15OpKernelContextE+0x2a)[0x7f6d0b46b78a]
[ip-172-31-14-112:20673] [ 9] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(+0x77dbe0)[0x7f6d0b4c1be0]
[ip-172-31-14-112:20673] [10] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(+0x77dc6f)[0x7f6d0b4c1c6f]
[ip-172-31-14-112:20673] [11] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZN5Eigen15ThreadPoolTemplIN10tensorflow6thread16EigenEnvironmentEE10WorkerLoopEi+0x2e2)[0x7f6d0b550c72]
[ip-172-31-14-112:20673] [12] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so(_ZNSt17_Function_handlerIFvvEZN10tensorflow6thread16EigenEnvironment12CreateThreadESt8functionIS0_EEUlvE_E9_M_invokeERKSt9_Any_data+0x48)[0x7f6d0b54de68]
[ip-172-31-14-112:20673] [13] /home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/bin/../lib/libstdc++.so.6(+0xafc5c)[0x7f6d1e74ec5c]
[ip-172-31-14-112:20673] [14] /lib/x86_64-linux-gnu/libpthread.so.0(+0x76ba)[0x7f6d30a086ba]
[ip-172-31-14-112:20673] [15] /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d)[0x7f6d3073e41d]
[ip-172-31-14-112:20673] *** End of error message ***
2%|1 |282/15000[01:37<1:25:03, 2.88it/s]
2%|1 |282/15000[01:37<1:25:12, 2.88it/s]
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_4596]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
2019-03-08 19:02:43.688498: E tensorflow/stream_executor/cuda/cuda_blas.cc:694] failed to run cuBLAS routine cublasSgemmEx: CUBLAS_STATUS_EXECUTION_FAILED
2%|1 |282/15000[01:35<1:23:19, 2.94it/s]
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
return fn(*args)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1320, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1408, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[{{node fpn/fpn/upsample_lat3/Tensordot/MatMul}}]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_5236]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/ubuntu/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 94, in launch_train_with_config
extra_callbacks=config.extra_callbacks)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 343, in train_with_defaults
steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 315, in train
self.main_loop(steps_per_epoch, starting_epoch, max_epoch)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 280, in main_loop
self.run_step() # implemented by subclass
File "/home/ubuntu/tensorpack-mask-rcnn/tensorpack/train/base.py", line 180, in run_step
self.hooked_sess.run(self.train_op)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 694, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1189, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1288, in run
raise six.reraise(*original_exc_info)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1273, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1345, in run
run_metadata=run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1109, in run
return self._sess.run(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 930, in run
run_metadata_ptr)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1153, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1329, in _do_run
run_metadata)
File "/home/ubuntu/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1349, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8601600, 1), b.shape=(1, 4), m=8601600, n=4, k=1
[[node fpn/fpn/upsample_lat3/Tensordot/MatMul (defined at /tensorpack-mask-rcnn/tensorpack/models/pool.py:130) ]]
[[gradients/rpn/rpn/box/Conv2D_grad/ShapeN/_5236]]
Original stack trace for 'fpn/fpn/upsample_lat3/Tensordot/MatMul':
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 651, in <module>
launch_train_with_config(traincfg, trainer)
File "/tensorpack-mask-rcnn/tensorpack/train/interface.py", line 84, in launch_train_with_config
model._build_graph_get_cost, model.get_optimizer)
File "/tensorpack-mask-rcnn/tensorpack/utils/argtools.py", line 176, in wrapper
return func(*args, **kwargs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 216, in setup_graph
train_callbacks = self._setup_graph(input, get_cost_fn, get_opt_fn)
File "/tensorpack-mask-rcnn/tensorpack/train/trainers.py", line 410, in _setup_graph
grads = self._make_get_grad_fn(input, get_cost_fn, get_opt_fn)()
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 283, in get_grad_fn
return compute_grad_from_inputs(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/train/tower.py", line 247, in compute_grad_from_inputs
cost = get_cost_fn(*inputs)
File "/tensorpack-mask-rcnn/tensorpack/tfutils/tower.py", line 286, in __call__
output = self._tower_fn(*args)
File "/tensorpack-mask-rcnn/tensorpack/graph_builder/model_desc.py", line 262, in _build_graph_get_cost
ret = self.build_graph(*inputs)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 124, in build_graph
features = self.backbone(images)
File "/tensorpack-mask-rcnn/MaskRCNN/train.py", line 193, in backbone
p23456 = fpn_model('fpn', c2345, fp16=self.fp16)
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 80, in fpn_model
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
File "/tensorpack-mask-rcnn/MaskRCNN/model_fpn.py", line 57, in upsample2x
data_format='channels_first')
File "/tensorpack-mask-rcnn/tensorpack/models/registry.py", line 128, in wrapped_func
outputs = func(*args, **actual_args)
File "/tensorpack-mask-rcnn/tensorpack/models/pool.py", line 130, in FixedUnPooling
ret = tf.tensordot(x, mat, axes=1) # bxcxhxwxshxsw
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 3641, in tensordot
ab_matmul = matmul(a_reshape, b_reshape)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py", line 2513, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py", line 5675, in mat_mul
name=name)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 800, in _apply_op_helper
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3473, in create_op
op_def=op_def)
File "/anaconda3/envs/tensorflow_p36_13rc1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1961, in __init__
self._traceback = tf_stack.extract_stack()
-------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun noticed that process rank 4 with PID 0 on node ip-172-31-14-112 exited on signal 6 (Aborted).
--------------------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment