Last active
August 29, 2015 14:02
-
-
Save vtomiris/dc850fd4e78611ff8887 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.grouplens.lenskit.knn.item.* | |
import org.grouplens.lenskit.baseline.* | |
import org.grouplens.lenskit.transform.normalize.* | |
import org.grouplens.lenskit.ItemScorer | |
import org.grouplens.lenskit.baseline.ItemMeanRatingItemScorer | |
import org.grouplens.lenskit.core.Transient | |
import org.grouplens.lenskit.data.dao.EventDAO | |
import org.grouplens.lenskit.data.dao.UserDAO | |
import org.grouplens.lenskit.eval.data.traintest.QueryData | |
import org.grouplens.lenskit.eval.metrics.predict.* | |
import org.grouplens.lenskit.external.ExternalProcessItemScorerBuilder | |
import javax.inject.Inject | |
import javax.inject.Provider | |
/** | |
* Shim class to run item-mean.py to build an ItemScorer. | |
*/ | |
class ExternalItemMeanScorerBuilder implements Provider { | |
EventDAO eventDAO | |
UserDAO userDAO | |
@Inject | |
public ExternalItemMeanScorerBuilder(@Transient EventDAO events, | |
@Transient @QueryData UserDAO users) { | |
eventDAO = events | |
userDAO = users | |
} | |
@Override | |
ItemScorer get() { | |
def wrk = new File("external-scratch") | |
wrk.mkdirs() | |
def builder = new ExternalProcessItemScorerBuilder() | |
// Note: don't use file names because it will interact badly with crossfolding | |
return builder.setWorkingDir(wrk) | |
.setExecutable("python") //can be "R", "matlab", "ruby" etc | |
.addArgument("/user/home/item_mean.py") //location of sample recommender | |
.addArgument("--for-users") | |
.addRatingFileArgument(eventDAO) | |
.addUserFileArgument(userDAO) | |
.build() | |
} | |
} | |
trainTest { | |
dataset crossfold("ml-100k") { | |
source csvfile("u.data") { | |
delimiter "\t" | |
domain { | |
minimum 1.0 | |
maximum 5.0 | |
precision 1.0 | |
} | |
} | |
} | |
algorithm("PersMean") { | |
bind ItemScorer to UserMeanItemScorer | |
bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer | |
} | |
metric RMSEPredictMetric | |
metric topNnDCG { | |
listSize 10 | |
candidates ItemSelectors.allItems() | |
exclude ItemSelectors.trainingItems() | |
} | |
output "eval-results.csv" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment