Created
April 26, 2017 20:07
-
-
Save vvanirudh/8d32f7c2d8ad79aa693101a20b75a451 to your computer and use it in GitHub Desktop.
GAN to model a 1D gaussian distribution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Drawn from https://gist.github.com/rocknrollnerd/06bfed6b9d1bce612fd6 (in theano) | |
# This is implemented in PyTorch | |
# Author : Anirudh Vemula | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
from scipy.stats import norm | |
import matplotlib.pyplot as plt | |
def sample_noise(M): | |
z = np.float32(np.linspace(-5.0, 5.0, M) + np.random.random(M) * 0.01) | |
return z | |
def plot_decision_boundary(discriminate): | |
xs = np.linspace(-5, 5, 1000) | |
plt.plot(xs, norm.pdf(xs, loc=mu, scale=sigma), label='p_data') | |
r = 1000 | |
xs = np.float32(np.linspace(-5, 5, r)) | |
xs_tensor = Variable(torch.from_numpy(xs.reshape(r, 1))) | |
ds_tensor = discriminate(xs_tensor) | |
ds = ds_tensor.data.numpy() | |
plt.plot(xs, ds, label='decision boundary') | |
plt.show() | |
def plot_fig(generate, discriminate): | |
xs = np.linspace(-5, 5, 1000) | |
plt.plot(xs, norm.pdf(xs, loc=mu, scale=sigma), label='p_data') | |
r = 5000 | |
xs = np.float32(np.linspace(-5, 5, r)) | |
xs_tensor = Variable(torch.from_numpy(xs.reshape(r, 1))) | |
ds_tensor = discriminate(xs_tensor) | |
ds = ds_tensor.data.numpy() | |
plt.plot(xs, ds, label='decision boundary') | |
zs = sample_noise(r) | |
zs_tensor = Variable(torch.from_numpy(np.float32(zs.reshape(r, 1)))) | |
gs_tensor = generate(zs_tensor) | |
gs = gs_tensor.data.numpy() | |
plt.hist(gs, bins=10, normed=True) | |
# Generator | |
class Generator(nn.Module): | |
def __init__(self): | |
super(Generator, self).__init__() | |
self.l1 = nn.Linear(1, 10) | |
self.l1_relu = nn.ReLU() | |
self.l2 = nn.Linear(10, 10) | |
self.l2_relu = nn.ReLU() | |
self.l3 = nn.Linear(10, 1) | |
def forward(self, input): | |
output = self.l1(input) | |
output = self.l1_relu(output) | |
output = self.l2(output) | |
output = self.l2_relu(output) | |
output = self.l3(output) | |
return output | |
# Discriminator | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.l1 = nn.Linear(1, 10) | |
self.l1_tanh = nn.Tanh() | |
self.l2 = nn.Linear(10, 10) | |
self.l2_tanh = nn.Tanh() | |
self.l3 = nn.Linear(10, 1) | |
self.l3_sigmoid = nn.Sigmoid() | |
def forward(self, input): | |
output = self.l1_tanh(self.l1(input)) | |
output = self.l2_tanh(self.l2(output)) | |
output = self.l3_sigmoid(self.l3(output)) | |
return output | |
def generator_criterion(d_output_g): | |
return -0.5 * torch.mean(torch.log(d_output_g)) | |
def discriminator_criterion(d_output_true, d_output_g): | |
return -0.5 * torch.mean(torch.log(d_output_true) + torch.log(1 - d_output_g)) | |
mu = -2 | |
sigma = 0.3 | |
M = 200 | |
discriminate = Discriminator() | |
generate = Generator() | |
plot_fig(generate, discriminate) | |
plt.title('Before training') | |
plt.show() | |
epochs = 400 | |
histd, histg = np.zeros(epochs), np.zeros(epochs) | |
k = 20 | |
visualize_training = False | |
plt.ion() | |
discriminate_optimizer = torch.optim.SGD(discriminate.parameters(), lr=0.1, momentum=0.6) | |
generate_optimizer = torch.optim.SGD(generate.parameters(), lr=0.01, momentum=0.6) | |
for i in range(epochs): | |
for j in range(k): | |
discriminate.zero_grad() | |
x = np.float32(np.random.normal(mu, sigma, M)) | |
z = sample_noise(M) | |
z_tensor = Variable(torch.from_numpy(np.float32(z.reshape(M, 1)))) | |
x_tensor = Variable(torch.from_numpy(np.float32(x.reshape(M, 1)))) | |
g_out = generate(z_tensor) | |
d_out_true = discriminate(x_tensor) | |
d_out_g = discriminate(g_out) | |
loss = discriminator_criterion(d_out_true, d_out_g) | |
loss.backward() | |
discriminate_optimizer.step() | |
histd[i] = loss.data.numpy() | |
generate.zero_grad() | |
z = sample_noise(M) | |
z_tensor = Variable(torch.from_numpy(np.float32(z.reshape(M, 1)))) | |
g_out = generate(z_tensor) | |
d_out_g = discriminate(g_out) | |
loss = generator_criterion(d_out_g) | |
loss.backward() | |
generate_optimizer.step() | |
histg[i] = loss.data.numpy() | |
if i % 10 == 0: | |
print 'Discriminator loss', histd[i] | |
print 'Generator loss', histg[i] | |
for param_group in generate_optimizer.param_groups: | |
param_group['lr'] *= 0.999 | |
for param_group in discriminate_optimizer.param_groups: | |
param_group['lr'] *= 0.999 | |
if visualize_training: | |
plt.clf() | |
plot_fig(generate, discriminate) | |
plt.draw() | |
plt.ioff() | |
plt.clf() | |
plt.plot(range(epochs), histd, label='obj_d') | |
plt.plot(range(epochs), histg, label='obj_g') | |
plt.legend() | |
plt.show() | |
plot_fig(generate, discriminate) | |
plt.title('After training') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment