Last active
February 23, 2016 15:15
-
-
Save vwrs/3b8364ba6a3dbe2bd7ee to your computer and use it in GitHub Desktop.
Problem 504
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <tgmath.h> | |
#include <stdio.h> | |
#include <stdlib.h> | |
// 20s | |
// Euclidean Algorithm | |
int gcd(int x, int y){ | |
if(y < 1) exit(0); // error | |
int z; | |
if(x < y){ | |
z = x; | |
x = y; | |
y = z; | |
} | |
if(x % y == 0) return y; | |
return gcd(y, x % y); | |
} | |
int is_square(int a, int b, int c, int d){ | |
int lp_contains = ((a+c)*(b+d)/2) - (gcd(a,b) + gcd(b,c) + gcd(c,d) + gcd(d,a)) / 2 + 1; | |
return pow((int)sqrt(lp_contains), 2) == lp_contains; | |
} | |
int main(){ | |
int m = 100; | |
// printf("input m: "); scanf("%d", &m); | |
int lp_square = 0; // answer | |
for(int a = 1; a <= m; a++){ | |
for(int b = 1; b <= m; b++){ | |
for(int c = 1; c <= m; c++){ | |
for(int d = 1; d <= m; d++){ | |
if(is_square(a, b, c, d)) lp_square++; | |
} | |
} | |
} | |
} | |
printf("answer: %d\n", lp_square); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Problem 504 | |
# 1[m]28[s] | |
# def get_area(a, b, c, d) | |
# return (a+c) * (b+d) / 2 | |
# end | |
# def get_LP_side(a, b, c, d) | |
# return a.gcd(b) + b.gcd(c) + c.gcd(d) + d.gcd(a) | |
# end | |
# Pick's theorem | |
# def get_LP(area, lp_side) | |
# return area - lp_side/2 + 1 | |
# end | |
def is_square(a, b, c, d) | |
lp_contains = ((a+c)*(b+d)/2) - (a.gcd(b) + b.gcd(c) + c.gcd(d) + d.gcd(a)) / 2 + 1 | |
return Math.sqrt(lp_contains).to_i ** 2 == lp_contains | |
end | |
m = 100 | |
# print 'input m: ' | |
# m = gets.to_i; | |
lp_square = 0 # answer | |
1.upto(m){|a| 1.upto(m){|b| 1.upto(m){|c| 1.upto(m){|d| lp_square += 1 if is_square(a,b,c,d) } } } } | |
puts "#{lp_square} quadrilaterals strictly contain a square number of lattice points in m = #{m}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
四角形ABCDに含まれる格子点を求める際ピックの定理を用いた。
完全に四角形の内部に含まれる格子点を求めるには,面積とABCDの辺上の格子点の数を求めれば良い。
辺上の格子点の数を求めるのに,最大公約数を用いた。