Last active
March 2, 2024 03:59
-
-
Save vwxyzjn/267d9ffb4c23b83e1a6455d8c8c40e13 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
from datasets import load_dataset | |
from rich.console import Console | |
from rich.table import Table | |
from transformers import ( | |
AutoTokenizer, | |
PreTrainedModel, | |
AutoModelForCausalLM, | |
GenerationConfig, | |
) | |
###### | |
# Utility functions | |
###### | |
def generate(lm_backbone, queries, tokenizer, generation_config): | |
"""generate in a way that does not affect padding tokens""" | |
context_length = queries.shape[1] | |
attention_mask = queries != tokenizer.pad_token_id | |
input_ids = torch.masked_fill(queries, ~attention_mask, 0) | |
output = lm_backbone.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
# position_ids=attention_mask.cumsum(1) - attention_mask.long(), # generation collapsed if this was turned on. TODO: why does generation collapse with this? | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
) | |
return torch.cat((queries, output.sequences[:, context_length:]), dim=1) | |
def forward(model, query_responses, tokenizer): | |
attention_mask = query_responses != tokenizer.pad_token_id | |
position_ids = attention_mask.cumsum(1) - attention_mask.long() | |
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0) | |
return model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
return_dict=True, | |
output_hidden_states=True, | |
) | |
def print_rich_table(title: str, df: pd.DataFrame, console: Console) -> Table: | |
table = Table(show_lines=True) | |
for column in df.columns: | |
table.add_column(column) | |
for _, row in df.iterrows(): | |
table.add_row(*row.astype(str).tolist()) | |
console.rule(f"[bold red]{title}") | |
console.print(table) | |
###### | |
# Start | |
###### | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-1b-deduped") | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
response_length = 80 | |
validation_generation_config = GenerationConfig( | |
max_new_tokens=response_length, | |
temperature=(0.01 + 1e-7), | |
top_k=0.0, | |
top_p=1.0, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
sft_dataset = load_dataset("vwxyzjn/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144") | |
base_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-1b-deduped").to(device) | |
# # https://wandb.ai/costa-huang/tldr_summarize/runs/a0rutstb | |
# # https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr/tree/sft__55513__1706646024 | |
# sft_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
# "vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr", | |
# revision="sft__55513__1706646024", | |
# trust_remote_code=True, | |
# ).to(device) | |
# https://wandb.ai/costa-huang/tldr_summarize/runs/ulekmmac | |
# https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__ppo_left_padding__tldr/tree/ppo_left_padding__55513__1706746254 | |
ppo_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
"vwxyzjn/EleutherAI_pythia-1b-deduped__ppo_left_padding__tldr", | |
revision="ppo_left_padding__55513__1706746254", | |
trust_remote_code=True, | |
).to(device) | |
compared_models = { | |
"base_model": base_model, | |
"aligned_model": ppo_model, | |
} | |
nchecks = 4 | |
colors = { | |
0: "on blue", | |
1: "on yellow", | |
2: "on yellow", | |
3: "on red", | |
} | |
console = Console() | |
for i in range(len(sft_dataset["validation"])): | |
table = defaultdict(list) | |
query = torch.Tensor(sft_dataset["validation"][i:i+1]["query_token"]).to(device).long() | |
query_reference_response = torch.Tensor(sft_dataset["validation"][i]["query_reference_response_token"]).to(device).long() | |
with torch.no_grad(): | |
aligned_model = compared_models["aligned_model"] | |
base_model = compared_models["base_model"] | |
context_length = query.shape[1] | |
aligned_model_query_response = generate(aligned_model, query, tokenizer, validation_generation_config) | |
aligned_model_response = aligned_model_query_response[:, context_length:] | |
base_model_query_response = generate(base_model, query, tokenizer, validation_generation_config) | |
base_model_response = base_model_query_response[:, context_length:] | |
aligned_model_output = forward(aligned_model, aligned_model_query_response, tokenizer) | |
base_model_output = forward(base_model, aligned_model_query_response, tokenizer) | |
aligned_model_logits = aligned_model_output.logits[:, context_length-1:-1] | |
_, aligned_model_topk_indices = aligned_model_logits.topk(10) | |
base_model_logits = base_model_output.logits[:, context_length-1:-1] | |
_, base_model_topk_indices = base_model_logits.topk(10) | |
aligned_model_topk_indices[:,:,0:1].expand(-1, -1, nchecks) | |
matches = aligned_model_topk_indices[:,:,0:1].expand(-1, -1, nchecks) == base_model_topk_indices[:,:,0:nchecks] | |
matched = matches.sum(2) | |
match_idx = matches.float().argmax(2) | |
final_matches = torch.where(matched > 0, match_idx, nchecks-1) | |
stats = torch.stack([(final_matches == i).sum(1) for i in range(nchecks)]).T | |
final_matches = final_matches.tolist() | |
aligned_model_response = aligned_model_response.tolist() | |
table["type"].append("Query") | |
table["content"].append(tokenizer.decode(query[0], skip_special_tokens=True)) | |
table["type"].append("PPO Model Response") | |
table["content"].append("".join([f"[{colors[jt]}]{tokenizer.decode(it)}[/{colors[jt]}]" for it, jt in zip(aligned_model_response[0], final_matches[0])])) | |
table["type"].append("Matched Color Counts") | |
table["content"].append(stats[0]) | |
table["type"].append("Base Model Response") | |
table["content"].append(tokenizer.decode(base_model_response[0], skip_special_tokens=True)) | |
df = pd.DataFrame(table) | |
print_rich_table("Results", df, console) | |
if input("Continue? (press `n` to stop) ") == "n": | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment