Last active
December 18, 2024 20:19
-
-
Save vwxyzjn/c93a4d75b2845fbe18b92b8ce33dc9f8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/olmo/modeling_olmo.py | |
# Copyright 2024 The vLLM team. | |
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only OLMo model compatible with HuggingFace weights.""" | |
from typing import Iterable, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from transformers import OlmoConfig | |
from vllm.attention import Attention, AttentionMetadata | |
from vllm.config import CacheConfig | |
from vllm.distributed import get_tensor_model_parallel_world_size | |
from vllm.model_executor.layers.activation import SiluAndMul | |
from vllm.model_executor.layers.layernorm import RMSNorm | |
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.logits_processor import LogitsProcessor | |
from vllm.model_executor.layers.quantization.base_config import ( | |
QuantizationConfig) | |
from vllm.model_executor.layers.rotary_embedding import get_rope | |
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
ParallelLMHead, VocabParallelEmbedding) | |
from vllm.model_executor.model_loader.weight_utils import default_weight_loader | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.sequence import IntermediateTensors | |
class FlippedSiluAndMul(SiluAndMul): | |
"""OLMo is trained with SwiGLU with flipped halves.""" | |
def forward(self, x: torch.Tensor): | |
a, b = x.chunk(2, dim=-1) | |
flipped = torch.cat((b, a), dim=-1) | |
return super().forward(flipped) | |
class OlmoAttention(nn.Module): | |
""" | |
This is the attention block where the output is computed as | |
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` | |
(plus another skip connection). | |
""" | |
def __init__( | |
self, | |
config: OlmoConfig, | |
cache_config: Optional[CacheConfig] = None, | |
quant_config: Optional[QuantizationConfig] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
tensor_model_parallel_world_size = ( | |
get_tensor_model_parallel_world_size()) | |
self.total_num_heads = config.num_attention_heads | |
assert self.hidden_size % self.total_num_heads == 0 | |
assert self.total_num_heads % tensor_model_parallel_world_size == 0 | |
self.num_heads = (self.total_num_heads // | |
tensor_model_parallel_world_size) | |
self.head_dim = self.hidden_size // self.total_num_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
# Attention input projection. Projects x -> (q, k, v) | |
self.qkv_proj = QKVParallelLinear( | |
self.hidden_size, | |
self.head_dim, | |
self.total_num_heads, | |
bias=config.attention_bias, | |
quant_config=quant_config, | |
) | |
attention_layer_norm = True | |
if attention_layer_norm: | |
# TODO: finish adding qk norm and norm_after | |
self.k_norm = RMSNorm( | |
(config.hidden_size // config.num_attention_heads) * config.num_key_value_heads, | |
eps=config.rms_norm_eps, | |
#elementwise_affine=config.attention_layer_norm_with_affine, | |
#bias=False, | |
) | |
self.q_norm = RMSNorm( | |
config.hidden_size, | |
eps=config.rms_norm_eps, | |
) | |
# Rotary embeddings. | |
self.rotary_emb = get_rope( | |
self.head_dim, | |
rotary_dim=self.head_dim, | |
max_position=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.attn = Attention(self.num_heads, | |
self.head_dim, | |
scale=self.scaling, | |
cache_config=cache_config, | |
quant_config=quant_config) | |
# Attention output projection. | |
self.o_proj = RowParallelLinear( | |
self.hidden_size, | |
self.hidden_size, | |
bias=config.attention_bias, | |
quant_config=quant_config, | |
) | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: torch.Tensor, | |
attn_metadata: AttentionMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.qkv_proj(hidden_states) | |
q, k, v = qkv.chunk(chunks=3, dim=-1) | |
q = self.q_norm.forward_native(q) | |
k = self.k_norm.forward_native(k) | |
#q = self.q_norm(q) | |
#k = self.k_norm(k) | |
q, k = self.rotary_emb(positions, q, k) | |
attn_output = self.attn(q, k, v, kv_cache, attn_metadata) | |
output, _ = self.o_proj(attn_output) | |
return output | |
class OlmoMLP(nn.Module): | |
""" | |
This is the MLP block where the output is computed as | |
``MLP(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` | |
(plus another skip connection). | |
""" | |
def __init__( | |
self, | |
config: OlmoConfig, | |
quant_config: Optional[QuantizationConfig] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
try: | |
self.intermediate_size = config.intermediate_size | |
except AttributeError: | |
if config.mlp_hidden_size is not None: | |
self.intermediate_size = config.mlp_hidden_size // 2 | |
else: | |
self.intermediate_size = (config.hidden_size * config.mlp_ratio) // 2 | |
# Feed-forward input projection. | |
self.gate_up_proj = MergedColumnParallelLinear( | |
self.hidden_size, | |
[self.intermediate_size] * 2, | |
bias=False, | |
quant_config=quant_config, | |
) | |
# Activation function. | |
self.act_fn = SiluAndMul() | |
# Feed-forward output projection. | |
self.down_proj = RowParallelLinear( | |
self.intermediate_size, | |
self.hidden_size, | |
bias=False, | |
quant_config=quant_config, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
) -> torch.Tensor: | |
gate_up, _ = self.gate_up_proj(x) | |
x = self.act_fn(gate_up) | |
x, _ = self.down_proj(x) | |
return x | |
class OlmoDecoderLayer(nn.Module): | |
""" | |
This is a typical transformer block where the output is | |
computed as ``MLP(LN(x + Attention(LN(x))))`` | |
(plus another skip connection). | |
""" | |
def __init__(self, | |
config: OlmoConfig, | |
cache_config: Optional[CacheConfig] = None, | |
quant_config: Optional[QuantizationConfig] = None): | |
super().__init__() | |
# Attention block. | |
self.self_attn = OlmoAttention(config, cache_config, quant_config) | |
# MLP block. | |
self.mlp = OlmoMLP(config, quant_config) | |
# LayerNorm | |
self.norm_after = True | |
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
""" | |
self.input_layernorm = nn.LayerNorm(config.hidden_size, | |
elementwise_affine=False, | |
bias=False) | |
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, | |
elementwise_affine=False, | |
bias=False) | |
""" | |
def forward( | |
self, | |
positions: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: torch.Tensor, | |
attn_metadata: AttentionMetadata, | |
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: | |
# Attention block. | |
residual = hidden_states | |
if self.norm_after: | |
hidden_states = self.self_attn(positions, hidden_states, kv_cache, | |
attn_metadata) | |
hidden_states = self.input_layernorm(hidden_states) | |
else: | |
hidden_states = self.input_layernorm(hidden_states) | |
hidden_states = self.self_attn(positions, hidden_states, kv_cache, | |
attn_metadata) | |
hidden_states = hidden_states + residual | |
# MLP block. | |
residual = hidden_states | |
if self.norm_after: | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
else: | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class OlmoModel(nn.Module): | |
def __init__(self, | |
config: Union[OlmoConfig], | |
cache_config: Optional[CacheConfig] = None, | |
quant_config: Optional[QuantizationConfig] = None): | |
super().__init__() | |
self.config = config | |
self.embed_tokens = VocabParallelEmbedding(config.vocab_size, | |
config.hidden_size) | |
self.layers = nn.ModuleList([ | |
OlmoDecoderLayer(config, cache_config, quant_config) | |
for layer_idx in range(config.num_hidden_layers) | |
]) | |
self.norm = RMSNorm( | |
config.hidden_size, | |
eps=config.rms_norm_eps, | |
#elementwise_affine=config.layer_norm_with_affine, | |
#bias=config.bias_for_layer_norm | |
) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[torch.Tensor], | |
attn_metadata: AttentionMetadata, | |
) -> torch.Tensor: | |
""" | |
:param input_ids: A tensor of shape `(batch_size, seq_len)`. | |
""" | |
# Get embeddings of input. | |
# shape: (batch_size, seq_len, hidden_size) | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
hidden_states = inputs_embeds | |
# Apply blocks one-by-one. | |
for layer_idx, decoder_layer in enumerate(self.layers): | |
# shape: (batch_size, seq_len, hidden_size) | |
hidden_states = decoder_layer( | |
positions, | |
hidden_states, | |
kv_caches[layer_idx], | |
attn_metadata, | |
) | |
# Apply final layer norm. | |
# shape: (batch_size, seq_len or 1, hidden_size) | |
hidden_states = self.norm(hidden_states) | |
return hidden_states | |
class OlmoNewForCausalLM(nn.Module): | |
""" | |
Extremely barebones HF model wrapper. | |
""" | |
def __init__(self, | |
config: OlmoConfig, | |
cache_config: Optional[CacheConfig] = None, | |
quant_config: Optional[QuantizationConfig] = None): | |
super().__init__() | |
self.config = config | |
self.model = OlmoModel(config, cache_config, quant_config) | |
if config.tie_word_embeddings: | |
self.lm_head = self.model.embed_tokens | |
else: | |
self.unpadded_vocab_size = config.vocab_size | |
self.lm_head = ParallelLMHead( | |
#self.unpadded_vocab_size, | |
config.vocab_size, | |
config.hidden_size, | |
org_num_embeddings=config.vocab_size, | |
#org_num_embeddings=config.vocab_size, | |
quant_config=quant_config, | |
) | |
self.logits_processor = LogitsProcessor(config.vocab_size) | |
self.sampler = Sampler() | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[torch.Tensor], | |
attn_metadata: AttentionMetadata, | |
intermediate_tensors: Optional[IntermediateTensors] = None, | |
) -> torch.Tensor: | |
hidden_states = self.model( | |
input_ids=input_ids, | |
positions=positions, | |
kv_caches=kv_caches, | |
attn_metadata=attn_metadata, | |
) | |
return hidden_states | |
def compute_logits( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[torch.Tensor]: | |
logits = self.logits_processor(self.lm_head, hidden_states, | |
sampling_metadata) | |
return logits | |
def sample( | |
self, | |
logits: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(logits, sampling_metadata) | |
return next_tokens | |
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | |
mapper = {} | |
"loaded weights -> uninitialized model weights" | |
for layer_i in range(self.config.num_hidden_layers): | |
mapper[f"model.layers.{layer_i}.post_attention_layernorm.weight"] = f"model.layers.{layer_i}.input_layernorm.weight" | |
mapper[f"model.layers.{layer_i}.post_feedforward_layernorm.weight"] = f"model.layers.{layer_i}.post_attention_layernorm.weight" | |
# from rich.pretty import pprint | |
# pprint(mapper) | |
stacked_params_mapping = [ | |
# (param_name, shard_name, shard_id) | |
("qkv_proj", "q_proj", "q"), | |
("qkv_proj", "k_proj", "k"), | |
("qkv_proj", "v_proj", "v"), | |
("gate_up_proj", "gate_proj", 0), | |
("gate_up_proj", "up_proj", 1), | |
] | |
params_dict = dict(self.named_parameters(remove_duplicate=False)) | |
for name, loaded_weight in weights: | |
if "rotary_emb.inv_freq" in name: | |
continue | |
if ("rotary_emb.cos_cached" in name | |
or "rotary_emb.sin_cached" in name): | |
# Models trained using ColossalAI may include these tensors in | |
# the checkpoint. Skip them. | |
continue | |
# With tie_word_embeddings, we can skip lm_head.weight | |
# The weight might appear unnecessarily in the files if the model is | |
# processed with quantization, LoRA, fine-tuning, etc. | |
if self.config.tie_word_embeddings and "lm_head.weight" in name: | |
continue | |
for (param_name, weight_name, shard_id) in stacked_params_mapping: | |
if weight_name not in name: | |
continue | |
name = name.replace(weight_name, param_name) | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = param.weight_loader | |
weight_loader(param, loaded_weight, shard_id) | |
# print("loaded", name, param) | |
break | |
else: | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[mapper.get(name, name)] | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |
# print("loaded", name, param) | |
if __name__ == "__main__": | |
from vllm.model_executor.models import ModelRegistry | |
ModelRegistry.register_model("Olmo2ForCausalLM", OlmoNewForCausalLM) | |
# here we just register the new model class | |
# need to run `pip install git+https://github.com/vwxyzjn/transformers.git@olmo1124_classification` | |
from transformers import AutoTokenizer | |
from vllm import LLM, SamplingParams | |
tokenizer = AutoTokenizer.from_pretrained( | |
"allenai/open_instruct_dev", | |
revision="olmo1124_finetune2__allenai_open_instruct_dev__42__1731388853", | |
) | |
conv = [ | |
{"role": "user", "content": "How are you doing?"}, | |
] | |
token = tokenizer.apply_chat_template(conv, add_generation_prompt=True) | |
tokens = torch.tensor([token]).cuda() | |
torch.cuda.empty_cache() | |
s = SamplingParams(temperature=0.0, max_tokens=100) | |
llm = LLM(model="allenai/OLMo-2-1124-13B-Instruct-RLVR1") | |
outputs = llm.generate(prompt_token_ids=[token], sampling_params=s) | |
for output in outputs: | |
prompt = output.prompt | |
generated_text = output.outputs[0].text | |
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment