Created
May 10, 2019 02:06
-
-
Save vwxyzjn/f14078cc7788731abba0426f102af928 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Reference: http://inoryy.com/post/tensorflow2-deep-reinforcement-learning/ | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torch.distributions.categorical import Categorical | |
import random | |
import numpy as np | |
import gym | |
import matplotlib.pyplot as plt | |
from collections import deque | |
import random | |
# Hyperparameters | |
learning_rate = 1e-4 | |
gamma = 0.98 | |
seed = 1 | |
num_episodes = 5000 | |
batch_sz = 200 | |
# Set up the env | |
env = gym.make("CartPole-v0") | |
np.random.seed(seed) | |
torch.manual_seed(0) | |
torch.backends.cudnn.deterministic = True | |
env.seed(seed) | |
class Policy(nn.Module): | |
def __init__(self): | |
super(Policy, self).__init__() | |
self.fc1 = nn.Linear(4, 120) | |
self.fc2 = nn.Linear(120, 84) | |
self.fc3 = nn.Linear(84, env.action_space.n) | |
def forward(self, x): | |
x = torch.Tensor(x) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = F.relu(self.fc3(x)) | |
x = Categorical(logits=x) | |
return x.sample() | |
class Value(nn.Module): | |
def __init__(self): | |
super(Value, self).__init__() | |
self.fc1 = nn.Linear(4, 64) | |
self.fc2 = nn.Linear(64, 1) | |
def forward(self, x): | |
x = torch.Tensor(x) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
return x | |
# TODO: initialize agent here: | |
pg = Policy() | |
vf = Value() | |
# start the game | |
ep_rews = np.zeros((num_episodes,)) | |
next_obs = env.reset() | |
for update in range(num_episodes): | |
# storage helpers for data | |
actions = np.empty((batch_sz,), dtype=np.int32) | |
rewards, dones, values = np.zeros((3, batch_sz)) | |
observations = np.empty((batch_sz,) + env.observation_space.shape) | |
next_obs = env.reset() | |
for step in range(batch_sz): | |
observations[step] = next_obs.copy() | |
# TODO: put action logic here | |
action = pg.forward(observations[step]) | |
value = vf.forward(observations[step]) | |
# execute the game and log data. | |
actions[step], values[step] = action, value | |
next_obs, rewards[step], dones[step], _ = env.step(actions[step]) | |
if dones[step]: | |
break | |
ep_rews[update] = rewards.sum() | |
if update % 10 == 0: | |
print(f"update = {update}, rewards = {ep_rews[update]}") | |
p = Policy() | |
print(p) | |
p.forward(torch.Tensor(env.observation_space.sample())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment