-
-
Save vyraun/030be2e01889d4e94c0c905069f522d9 to your computer and use it in GitHub Desktop.
ST-Gumbel-Softmax-Pytorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def sample_gumbel(shape, eps=1e-20): | |
U = torch.rand(shape).cuda() | |
return -Variable(torch.log(-torch.log(U + eps) + eps)) | |
def gumbel_softmax_sample(logits, temperature): | |
y = logits + sample_gumbel(logits.size()) | |
return F.softmax(y / temperature, dim=-1) | |
def gumbel_softmax(logits, temperature): | |
""" | |
input: [*, n_class] | |
return: [*, n_class] an one-hot vector | |
""" | |
y = gumbel_softmax_sample(logits, temperature) | |
shape = y.size() | |
_, ind = y.max(dim=-1) | |
y_hard = torch.zeros_like(y).view(-1, shape[-1]) | |
y_hard.scatter_(1, ind.view(-1, 1), 1) | |
y_hard = y_hard.view(*shape) | |
return (y_hard - y).detach() + y | |
if __name__ == '__main__': | |
import math | |
print(gumbel_softmax(Variable(torch.cuda.FloatTensor([[math.log(0.1), math.log(0.4), math.log(0.3), math.log(0.2)]] * 20000)), 0.8).sum(dim=0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment