-
-
Save vyraun/4bbda29c2c8007ee6b34bc64b5e22e13 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# PyTorch code For implementing the mixture of softmaxes layer from | |
# "Breaking the Softmax Bottleneck: A High-Rank RNN Language Model" | |
# https://arxiv.org/abs/1711.03953 | |
context = self.fc(out) | |
# Non-log version | |
priors = F.softmax(context[:,-self.n_components:]) | |
mixtures = torch.stack([priors[:,i].unsqueeze(1) * F.softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(self.n_components)],1) | |
out = torch.log(mixtures.sum(1)) | |
# Log version | |
# log_priors = F.log_softmax(context[:,-self.num_components:]).unsqueeze(2) | |
# log_mixtures = torch.stack([F.log_softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(num_components)],1) | |
# log_priors = F.log_softmax(context[:,-self.num_components:]) | |
# log_mixtures = torch.stack([log_priors[:,i] + F.log_softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(num_components)],1) | |
# out = torch.log(torch.exp(log_priors + log_mixtures).sum(1)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment