-
-
Save vyraun/fd4644ca1423c3327f27f4c1ec69c275 to your computer and use it in GitHub Desktop.
Sample the next token from a probability distribution using top-k and/or nucleus (top-p) sampling
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (..., vocabulary size) | |
top_k >0: keep only top k tokens with highest probability (top-k filtering). | |
top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
""" | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
# Here is how to use this function for top-p sampling | |
temperature = 1.0 | |
top_k = 0 | |
top_p = 0.9 | |
# Get logits with a forward pass in our model (input is pre-defined) | |
logits = model(input) | |
# Keep only the last token predictions, apply a temperature coefficient and filter | |
logits = logits[..., -1, :] / temperature | |
filtered_logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
# Sample from the filtered distribution | |
probabilities = F.softmax(filtered_logits, dim=-1) | |
next_token = torch.multinomial(probabilities, 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment