Last active
August 24, 2016 19:33
-
-
Save walkerke/5a7b1eb3d3f9f1ae8adfa7c3a7832208 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(animation) | |
library(readxl) | |
library(tidyr) | |
library(dplyr) | |
library(stringr) | |
library(magrittr) | |
# Data source: Jonathan Schroeder at http://conservancy.umn.edu/handle/11299/181605 | |
df <- read_excel('cbsa2013_hist_pops.xlsx') | |
dft <- df %>% | |
gather(key = year, value = population, epop1790:pop2010) %>% | |
mutate(year = as.numeric(str_sub(year, start = -4))) | |
dft$name_short <- str_split_fixed(dft$CBSA_NAME, ",", n = 2)[,1] | |
dft$name_short <- str_split_fixed(dft$name_short, "-", n = 2)[,1] | |
dft$name_short <- str_split_fixed(dft$name_short, "/", n = 2)[,1] | |
top20 <- dft %>% | |
group_by(year) %>% | |
mutate(rank = min_rank(desc(population))) %>% | |
ungroup() %>% | |
filter(rank <= 20) | |
northeast <- c("Albany", "Boston", "Bridgeport", "Claremont", "Hartford", "New York", | |
"Philadelphia", "Pittsburgh", "Portland", "Providence", "Springfield", | |
"Torrington", "Worcester", "Rochester", "Syracuse", "Buffalo", "Scranton") | |
midwest <- c("Cincinnati", "Columbus", "Chicago", "St. Louis", "Indianapolis", "Detroit", | |
"Kansas City", "Cleveland", "Minneapolis", "Milwaukee") | |
south <- c("Baltimore", "Charleston", "Charlotte", "Richmond", "Salisbury", "Virginia Beach", "Washington", | |
"Charlottesville", "Lexington", "Nashville", "Louisville", "Atlanta", "New Orleans", | |
"Dallas", "Houston", "Miami", "Tampa") | |
west <- c("San Francisco", "Los Angeles", "Seattle", "San Diego", "Phoenix", "Riverside") | |
top20 %<>% | |
mutate(region = ifelse(name_short %in% northeast, "Northeast", | |
ifelse(name_short %in% midwest, "Midwest", | |
ifelse(name_short %in% south, "South", | |
ifelse(name_short %in% west, "West", NA)))), | |
poplabel = ifelse(population < 1000000, paste0(as.character(round(population / 1000, 0)), "k"), | |
paste0(as.character(round(population / 1000000, 2)), "m")), | |
position_label = ifelse(population < 100000, 1000000, 1200000), | |
name_short = str_pad(top20$name_short, 15, "left")) | |
saveGIF({ | |
for (i in seq(1790, 2010, 10)) { | |
yearly <- filter(top20, year == i) | |
g <- ggplot() + | |
geom_bar(data = yearly, aes(y = population, x = reorder(name_short, population), | |
fill = region, frame = year), stat = "identity") + | |
geom_text(data = yearly, aes(y = population + position_label, x = reorder(name_short, population), | |
label = poplabel), fontface = "bold") + | |
coord_flip() + | |
scale_y_continuous(limits = c(0, 25000000), expand = c(0, 0)) + | |
scale_fill_manual(values = c("Northeast" = "#e41a1c", "Midwest" = "#377eb8", | |
"South" = "#4daf4a", "West" = "#984ea3")) + | |
theme_minimal(base_size = 16, base_family = "Tahoma") + | |
theme(panel.grid.major.x = element_blank(), | |
panel.grid.minor.x = element_blank(), | |
panel.grid.major.y = element_blank(), | |
panel.grid.minor.y = element_blank(), | |
plot.title = element_text(face = "bold"), | |
axis.text.x = element_blank(), | |
legend.position = "bottom") + | |
labs(y = "", | |
x = "", | |
fill = "", | |
caption = "Data source: Jonathan Schroeder, University of Minnesota | Chart by @kyle_e_walker", | |
title = paste0("20 largest US metro areas by population, ", as.character(i))) | |
print(g) | |
} | |
}, movie.name = "metro_pop.gif", interval = 0.8, ani.width = 700, ani.height = 600) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment