Created
October 13, 2017 19:05
-
-
Save walkerke/c661a3176d97c34ca47e11c86135891a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidycensus) | |
library(tidyverse) | |
library(geofacet) | |
library(stringr) | |
library(extrafont) | |
age <- get_acs(geography = "county", state = "AL", table = "B01001", | |
summary_var = "B01001_001") %>% | |
mutate(variable = str_replace(variable, "B01001_0", "")) %>% | |
filter(!variable %in% c("01", "02", "26")) | |
# Wrangle it | |
agegroups <- c("0-4", "5-9", "10-14", "15-19", "15-19", "20-24", "20-24", | |
"20-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", | |
"55-59", "60-64", "60-64", "65-69", "65-69", "70-74", "75-79", | |
"80-84", "85+") | |
agesex <- c(paste("Male", agegroups), | |
paste("Female", agegroups)) | |
agefull <- rep(agesex, length(unique(age$NAME))) | |
age$group <- agefull | |
age2 <- age %>% | |
group_by(NAME, group) %>% | |
mutate(group_est = sum(estimate)) %>% | |
distinct(NAME, group, .keep_all = TRUE) %>% | |
ungroup() %>% | |
mutate(percent = 100 * (group_est / summary_est), | |
NAME = str_replace(NAME, " County, Alabama", "")) %>% | |
select(name = NAME, group, percent) %>% | |
separate(group, into = c("sex", "age"), sep = " ") %>% | |
mutate(age = factor(age, levels = unique(age)), | |
percent = ifelse(sex == "Female", percent, -percent)) | |
xlabs = c("0-4" = "0-4", "5-9" = "", "10-14" = "", "15-19" = "", "20-24" = "", | |
"25-29" = "", "30-34" = "", "35-39" = "", "40-44" = "", "45-49" = "", | |
"50-54" = "", "55-59" = "", "60-64" = "", "65-69" = "", "70-74" = "", | |
"75-79" = "", "80-84" = "", "85+" = "85+") | |
mygrid <- data.frame( | |
row = c(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11), | |
col = c(3, 4, 5, 6, 3, 2, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 2, 3, 5, 6, 7, 8, 4, 2, 3, 4, 6, 7, 8, 5, 1, 2, 3, 5, 6, 7, 8, 4, 1, 2, 3, 5, 6, 7, 8, 4, 1, 2, 5, 6, 7, 4, 3, 2, 5, 6, 4, 7, 3, 4, 5, 2, 3, 6, 5, 2, 1), | |
code = c("Lauderdale", "Limestone", "Madison", "Jackson", "Colbert", "Franklin", "Lawrence", "Morgan", "Marshall", "DeKalb", "Marion", "Winston", "Cullman", "Blount", "Etowah", "Cherokee", "Lamar", "Fayette", "Jefferson", "St. Clair", "Calhoun", "Cleburne", "Walker", "Pickens", "Tuscaloosa", "Bibb", "Talladega", "Clay", "Randolph", "Shelby", "Sumter", "Greene", "Hale", "Chilton", "Coosa", "Tallapoosa", "Chambers", "Perry", "Choctaw", "Marengo", "Wilcox", "Autauga", "Elmore", "Macon", "Lee", "Dallas", "Washington", "Clarke", "Montgomery", "Bullock", "Russell", "Lowndes", "Butler", "Monroe", "Pike", "Barbour", "Crenshaw", "Henry", "Conecuh", "Coffee", "Dale", "Escambia", "Covington", "Houston", "Geneva", "Baldwin", "Mobile"), | |
name = c("Lauderdale", "Limestone", "Madison", "Jackson", "Colbert", "Franklin", "Lawrence", "Morgan", "Marshall", "DeKalb", "Marion", "Winston", "Cullman", "Blount", "Etowah", "Cherokee", "Lamar", "Fayette", "Jefferson", "St. Clair", "Calhoun", "Cleburne", "Walker", "Pickens", "Tuscaloosa", "Bibb", "Talladega", "Clay", "Randolph", "Shelby", "Sumter", "Greene", "Hale", "Chilton", "Coosa", "Tallapoosa", "Chambers", "Perry", "Choctaw", "Marengo", "Wilcox", "Autauga", "Elmore", "Macon", "Lee", "Dallas", "Washington", "Clarke", "Montgomery", "Bullock", "Russell", "Lowndes", "Butler", "Monroe", "Pike", "Barbour", "Crenshaw", "Henry", "Conecuh", "Coffee", "Dale", "Escambia", "Covington", "Houston", "Geneva", "Baldwin", "Mobile"), | |
stringsAsFactors = FALSE | |
) | |
ggplot(data = age2, aes(x = age, y = percent, fill = sex)) + | |
geom_bar(stat = "identity", width = 1) + | |
scale_y_continuous(breaks=c(-5, 0, 5),labels=c("5%", "0%", "5%")) + | |
coord_flip() + | |
theme_minimal(base_family = "Tahoma") + | |
scale_x_discrete(labels = xlabs) + | |
scale_fill_manual(values = c("red", "navy")) + | |
theme(panel.grid.major = element_blank(), | |
panel.grid.minor = element_blank()) + | |
labs(x = "", y = "", fill = "", | |
title = "Demographic structure of Alabama counties", | |
caption = "Data source: 2011-2015 ACS. Chart by @kyle_e_walker.") + | |
facet_geo(~ name, grid = mygrid) | |
ggsave("plots/alabama.png", height = 12, width = 10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment