Last active
November 6, 2018 01:03
-
-
Save walkoncross/7b413902e7c9e3d64ec2e02e8d23c734 to your computer and use it in GitHub Desktop.
sphereface_20 train prototxt, netscope: http://ethereon.github.io/netscope/#/gist/7b413902e7c9e3d64ec2e02e8d23c734
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "SpherefaceNet-20" | |
layer { | |
name: "data" | |
type: "ImageData" | |
top: "data" | |
top: "label" | |
transform_param { | |
mean_value: 127.5 | |
mean_value: 127.5 | |
mean_value: 127.5 | |
scale: 0.0078125 | |
mirror: true | |
} | |
image_data_param { | |
source: "data/CASIA-WebFace-112X96.txt" | |
batch_size: 256 | |
shuffle: true | |
} | |
} | |
############## CNN Architecture ############### | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "PReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "PReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "conv1_3" | |
type: "Convolution" | |
bottom: "conv1_2" | |
top: "conv1_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_3" | |
type: "PReLU" | |
bottom: "conv1_3" | |
top: "conv1_3" | |
} | |
layer { | |
name: "res1_3" | |
type: "Eltwise" | |
bottom: "conv1_1" | |
bottom: "conv1_3" | |
top: "res1_3" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "res1_3" | |
top: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "PReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "PReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "conv2_3" | |
type: "Convolution" | |
bottom: "conv2_2" | |
top: "conv2_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_3" | |
type: "PReLU" | |
bottom: "conv2_3" | |
top: "conv2_3" | |
} | |
layer { | |
name: "res2_3" | |
type: "Eltwise" | |
bottom: "conv2_1" | |
bottom: "conv2_3" | |
top: "res2_3" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv2_4" | |
type: "Convolution" | |
bottom: "res2_3" | |
top: "conv2_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_4" | |
type: "PReLU" | |
bottom: "conv2_4" | |
top: "conv2_4" | |
} | |
layer { | |
name: "conv2_5" | |
type: "Convolution" | |
bottom: "conv2_4" | |
top: "conv2_5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_5" | |
type: "PReLU" | |
bottom: "conv2_5" | |
top: "conv2_5" | |
} | |
layer { | |
name: "res2_5" | |
type: "Eltwise" | |
bottom: "res2_3" | |
bottom: "conv2_5" | |
top: "res2_5" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "res2_5" | |
top: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "PReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "PReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "PReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "res3_3" | |
type: "Eltwise" | |
bottom: "conv3_1" | |
bottom: "conv3_3" | |
top: "res3_3" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv3_4" | |
type: "Convolution" | |
bottom: "res3_3" | |
top: "conv3_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_4" | |
type: "PReLU" | |
bottom: "conv3_4" | |
top: "conv3_4" | |
} | |
layer { | |
name: "conv3_5" | |
type: "Convolution" | |
bottom: "conv3_4" | |
top: "conv3_5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_5" | |
type: "PReLU" | |
bottom: "conv3_5" | |
top: "conv3_5" | |
} | |
layer { | |
name: "res3_5" | |
type: "Eltwise" | |
bottom: "res3_3" | |
bottom: "conv3_5" | |
top: "res3_5" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv3_6" | |
type: "Convolution" | |
bottom: "res3_5" | |
top: "conv3_6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_6" | |
type: "PReLU" | |
bottom: "conv3_6" | |
top: "conv3_6" | |
} | |
layer { | |
name: "conv3_7" | |
type: "Convolution" | |
bottom: "conv3_6" | |
top: "conv3_7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_7" | |
type: "PReLU" | |
bottom: "conv3_7" | |
top: "conv3_7" | |
} | |
layer { | |
name: "res3_7" | |
type: "Eltwise" | |
bottom: "res3_5" | |
bottom: "conv3_7" | |
top: "res3_7" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv3_8" | |
type: "Convolution" | |
bottom: "res3_7" | |
top: "conv3_8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_8" | |
type: "PReLU" | |
bottom: "conv3_8" | |
top: "conv3_8" | |
} | |
layer { | |
name: "conv3_9" | |
type: "Convolution" | |
bottom: "conv3_8" | |
top: "conv3_9" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_9" | |
type: "PReLU" | |
bottom: "conv3_9" | |
top: "conv3_9" | |
} | |
layer { | |
name: "res3_9" | |
type: "Eltwise" | |
bottom: "res3_7" | |
bottom: "conv3_9" | |
top: "res3_9" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "res3_9" | |
top: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "PReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "PReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "PReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "res4_3" | |
type: "Eltwise" | |
bottom: "conv4_1" | |
bottom: "conv4_3" | |
top: "res4_3" | |
eltwise_param { | |
operation: 1 | |
} | |
} | |
layer { | |
name: "fc5" | |
type: "InnerProduct" | |
bottom: "res4_3" | |
top: "fc5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 512 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
############### A-Softmax Loss ############## | |
layer { | |
name: "fc6" | |
type: "MarginInnerProduct" | |
bottom: "fc5" | |
bottom: "label" | |
top: "fc6" | |
top: "lambda" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
margin_inner_product_param { | |
num_output: 10572 | |
type: QUADRUPLE | |
weight_filler { | |
type: "xavier" | |
} | |
base: 1000 | |
gamma: 0.12 | |
power: 1 | |
lambda_min: 5 | |
iteration: 0 | |
} | |
} | |
layer { | |
name: "softmax_loss" | |
type: "SoftmaxWithLoss" | |
bottom: "fc6" | |
bottom: "label" | |
top: "softmax_loss" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment