Last active
November 27, 2024 04:08
-
-
Save walkoncross/f814c24d332f89c4dcdb3e37822b6cbc to your computer and use it in GitHub Desktop.
se-sphereface-20-noaxpy-train.prototxt, netscope: http://ethereon.github.io/netscope/#/gist/f814c24d332f89c4dcdb3e37822b6cbc
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "SE-SpherefaceNet-20-noaxpy" | |
layer { | |
name: "data" | |
type: "ImageData" | |
top: "data" | |
top: "label" | |
transform_param { | |
mean_value: 127.5 | |
mean_value: 127.5 | |
mean_value: 127.5 | |
scale: 0.0078125 | |
mirror: true | |
} | |
image_data_param { | |
source: "/disk2/zhaoyafei/centerface-resnet-prototxt-noval/train_list_noval_10572-ids_450833-objs_170503-213839.txt" | |
batch_size: 512 | |
shuffle: true | |
} | |
} | |
############## CNN Architecture ############### | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "PReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "PReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "conv1_3" | |
type: "Convolution" | |
bottom: "conv1_2" | |
top: "conv1_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_3" | |
type: "PReLU" | |
bottom: "conv1_3" | |
top: "conv1_3" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE1_3/pool_gap" | |
type: "Pooling" | |
bottom: "conv1_3" | |
top: "SE1_3/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE1_3/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE1_3/pool_gap" | |
top: "SE1_3/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 4 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE1_3/relu" | |
type: "ReLU" | |
bottom: "SE1_3/fc_sqz" | |
top: "SE1_3/fc_sqz" | |
} | |
layer { | |
name: "SE1_3/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE1_3/fc_sqz" | |
top: "SE1_3/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 64 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE1_3/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE1_3/fc_exc" | |
top: "SE1_3/sig_gate" | |
} | |
layer { | |
name: "SE1_3/scale" | |
type: "Scale" | |
bottom: "conv1_3" | |
bottom: "SE1_3/sig_gate" | |
top: "SE1_3/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res1_3" | |
type: "Eltwise" | |
bottom: "conv1_1" | |
bottom: "SE1_3/scale" | |
top: "res1_3" | |
} | |
layer { | |
name: "res1_3_relu" | |
type: "ReLU" | |
bottom: "res1_3" | |
top: "res1_3" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "res1_3" | |
top: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "PReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "PReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "conv2_3" | |
type: "Convolution" | |
bottom: "conv2_2" | |
top: "conv2_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_3" | |
type: "PReLU" | |
bottom: "conv2_3" | |
top: "conv2_3" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE2_3/pool_gap" | |
type: "Pooling" | |
bottom: "conv2_3" | |
top: "SE2_3/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE2_3/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE2_3/pool_gap" | |
top: "SE2_3/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 8 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE2_3/relu" | |
type: "ReLU" | |
bottom: "SE2_3/fc_sqz" | |
top: "SE2_3/fc_sqz" | |
} | |
layer { | |
name: "SE2_3/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE2_3/fc_sqz" | |
top: "SE2_3/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 128 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE2_3/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE2_3/fc_exc" | |
top: "SE2_3/sig_gate" | |
} | |
layer { | |
name: "SE2_3/scale" | |
type: "Scale" | |
bottom: "conv2_3" | |
bottom: "SE2_3/sig_gate" | |
top: "SE2_3/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res2_3" | |
type: "Eltwise" | |
bottom: "conv2_1" | |
bottom: "SE2_3/scale" | |
top: "res2_3" | |
} | |
layer { | |
name: "res2_3_relu" | |
type: "ReLU" | |
bottom: "res2_3" | |
top: "res2_3" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv2_4" | |
type: "Convolution" | |
bottom: "res2_3" | |
top: "conv2_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_4" | |
type: "PReLU" | |
bottom: "conv2_4" | |
top: "conv2_4" | |
} | |
layer { | |
name: "conv2_5" | |
type: "Convolution" | |
bottom: "conv2_4" | |
top: "conv2_5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_5" | |
type: "PReLU" | |
bottom: "conv2_5" | |
top: "conv2_5" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE2_5/pool_gap" | |
type: "Pooling" | |
bottom: "conv2_5" | |
top: "SE2_5/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE2_5/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE2_5/pool_gap" | |
top: "SE2_5/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 8 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE2_5/relu" | |
type: "ReLU" | |
bottom: "SE2_5/fc_sqz" | |
top: "SE2_5/fc_sqz" | |
} | |
layer { | |
name: "SE2_5/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE2_5/fc_sqz" | |
top: "SE2_5/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 128 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE2_5/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE2_5/fc_exc" | |
top: "SE2_5/sig_gate" | |
} | |
layer { | |
name: "SE2_5/scale" | |
type: "Scale" | |
bottom: "conv2_5" | |
bottom: "SE2_5/sig_gate" | |
top: "SE2_5/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res2_5" | |
type: "Eltwise" | |
bottom: "res2_3" | |
bottom: "SE2_5/scale" | |
top: "res2_5" | |
} | |
layer { | |
name: "res2_5_relu" | |
type: "ReLU" | |
bottom: "res2_5" | |
top: "res2_5" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "res2_5" | |
top: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "PReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "PReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "PReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE3_3/pool_gap" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "SE3_3/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE3_3/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE3_3/pool_gap" | |
top: "SE3_3/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 16 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_3/relu" | |
type: "ReLU" | |
bottom: "SE3_3/fc_sqz" | |
top: "SE3_3/fc_sqz" | |
} | |
layer { | |
name: "SE3_3/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE3_3/fc_sqz" | |
top: "SE3_3/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 256 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_3/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE3_3/fc_exc" | |
top: "SE3_3/sig_gate" | |
} | |
layer { | |
name: "SE3_3/scale" | |
type: "Scale" | |
bottom: "conv3_3" | |
bottom: "SE3_3/sig_gate" | |
top: "SE3_3/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res3_3" | |
type: "Eltwise" | |
bottom: "conv3_1" | |
bottom: "SE3_3/scale" | |
top: "res3_3" | |
} | |
layer { | |
name: "res3_3_relu" | |
type: "ReLU" | |
bottom: "res3_3" | |
top: "res3_3" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv3_4" | |
type: "Convolution" | |
bottom: "res3_3" | |
top: "conv3_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_4" | |
type: "PReLU" | |
bottom: "conv3_4" | |
top: "conv3_4" | |
} | |
layer { | |
name: "conv3_5" | |
type: "Convolution" | |
bottom: "conv3_4" | |
top: "conv3_5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_5" | |
type: "PReLU" | |
bottom: "conv3_5" | |
top: "conv3_5" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE3_5/pool_gap" | |
type: "Pooling" | |
bottom: "conv3_5" | |
top: "SE3_5/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE3_5/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE3_5/pool_gap" | |
top: "SE3_5/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 16 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_5/relu" | |
type: "ReLU" | |
bottom: "SE3_5/fc_sqz" | |
top: "SE3_5/fc_sqz" | |
} | |
layer { | |
name: "SE3_5/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE3_5/fc_sqz" | |
top: "SE3_5/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 256 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_5/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE3_5/fc_exc" | |
top: "SE3_5/sig_gate" | |
} | |
layer { | |
name: "SE3_5/scale" | |
type: "Scale" | |
bottom: "conv3_5" | |
bottom: "SE3_5/sig_gate" | |
top: "SE3_5/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res3_5" | |
type: "Eltwise" | |
bottom: "res3_3" | |
bottom: "SE3_5/scale" | |
top: "res3_5" | |
} | |
layer { | |
name: "res3_5_relu" | |
type: "ReLU" | |
bottom: "res3_5" | |
top: "res3_5" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv3_6" | |
type: "Convolution" | |
bottom: "res3_5" | |
top: "conv3_6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_6" | |
type: "PReLU" | |
bottom: "conv3_6" | |
top: "conv3_6" | |
} | |
layer { | |
name: "conv3_7" | |
type: "Convolution" | |
bottom: "conv3_6" | |
top: "conv3_7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_7" | |
type: "PReLU" | |
bottom: "conv3_7" | |
top: "conv3_7" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE3_7/pool_gap" | |
type: "Pooling" | |
bottom: "conv3_7" | |
top: "SE3_7/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE3_7/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE3_7/pool_gap" | |
top: "SE3_7/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 16 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_7/relu" | |
type: "ReLU" | |
bottom: "SE3_7/fc_sqz" | |
top: "SE3_7/fc_sqz" | |
} | |
layer { | |
name: "SE3_7/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE3_7/fc_sqz" | |
top: "SE3_7/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 256 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_7/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE3_7/fc_exc" | |
top: "SE3_7/sig_gate" | |
} | |
layer { | |
name: "SE3_7/scale" | |
type: "Scale" | |
bottom: "conv3_7" | |
bottom: "SE3_7/sig_gate" | |
top: "SE3_7/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res3_7" | |
type: "Eltwise" | |
bottom: "res3_5" | |
bottom: "SE3_7/scale" | |
top: "res3_7" | |
} | |
layer { | |
name: "res3_7_relu" | |
type: "ReLU" | |
bottom: "res3_7" | |
top: "res3_7" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv3_8" | |
type: "Convolution" | |
bottom: "res3_7" | |
top: "conv3_8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_8" | |
type: "PReLU" | |
bottom: "conv3_8" | |
top: "conv3_8" | |
} | |
layer { | |
name: "conv3_9" | |
type: "Convolution" | |
bottom: "conv3_8" | |
top: "conv3_9" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_9" | |
type: "PReLU" | |
bottom: "conv3_9" | |
top: "conv3_9" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE3_9/pool_gap" | |
type: "Pooling" | |
bottom: "conv3_9" | |
top: "SE3_9/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE3_9/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE3_9/pool_gap" | |
top: "SE3_9/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 16 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_9/relu" | |
type: "ReLU" | |
bottom: "SE3_9/fc_sqz" | |
top: "SE3_9/fc_sqz" | |
} | |
layer { | |
name: "SE3_9/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE3_9/fc_sqz" | |
top: "SE3_9/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 256 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE3_9/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE3_9/fc_exc" | |
top: "SE3_9/sig_gate" | |
} | |
layer { | |
name: "SE3_9/scale" | |
type: "Scale" | |
bottom: "conv3_9" | |
bottom: "SE3_9/sig_gate" | |
top: "SE3_9/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res3_9" | |
type: "Eltwise" | |
bottom: "res3_7" | |
bottom: "SE3_9/scale" | |
top: "res3_9" | |
} | |
layer { | |
name: "res3_9_relu" | |
type: "ReLU" | |
bottom: "res3_9" | |
top: "res3_9" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "res3_9" | |
top: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "PReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "PReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "PReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
###begin Squeeze-Excitation ### | |
layer { | |
name: "SE4_3/pool_gap" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "SE4_3/pool_gap" | |
pooling_param { | |
pool: AVE | |
engine: CAFFE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "SE4_3/fc_sqz" | |
type: "InnerProduct" | |
bottom: "SE4_3/pool_gap" | |
top: "SE4_3/fc_sqz" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 32 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE4_3/relu" | |
type: "ReLU" | |
bottom: "SE4_3/fc_sqz" | |
top: "SE4_3/fc_sqz" | |
} | |
layer { | |
name: "SE4_3/fc_exc" | |
type: "InnerProduct" | |
bottom: "SE4_3/fc_sqz" | |
top: "SE4_3/fc_exc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
inner_product_param { | |
num_output: 512 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "SE4_3/sig_gate" | |
type: "Sigmoid" | |
bottom: "SE4_3/fc_exc" | |
top: "SE4_3/sig_gate" | |
} | |
layer { | |
name: "SE4_3/scale" | |
type: "Scale" | |
bottom: "conv4_3" | |
bottom: "SE4_3/sig_gate" | |
top: "SE4_3/scale" | |
scale_param { | |
axis: 0 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "res4_3" | |
type: "Eltwise" | |
bottom: "conv4_1" | |
bottom: "SE4_3/scale" | |
top: "res4_3" | |
} | |
layer { | |
name: "res4_3_relu" | |
type: "ReLU" | |
bottom: "res4_3" | |
top: "res4_3" | |
} | |
###end Squeeze-Excitation ### | |
layer { | |
name: "fc5" | |
type: "InnerProduct" | |
bottom: "res4_3" | |
top: "fc5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 512 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
############### A-Softmax Loss ############## | |
layer { | |
name: "fc6" | |
type: "MarginInnerProduct" | |
bottom: "fc5" | |
bottom: "label" | |
top: "fc6" | |
top: "lambda" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
margin_inner_product_param { | |
num_output: 10572 | |
type: QUADRUPLE | |
weight_filler { | |
type: "xavier" | |
} | |
base: 1000 | |
gamma: 0.12 | |
power: 1 | |
lambda_min: 5 | |
iteration: 0 | |
} | |
} | |
layer { | |
name: "softmax_loss" | |
type: "SoftmaxWithLoss" | |
bottom: "fc6" | |
bottom: "label" | |
top: "softmax_loss" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment