-
-
Save waltercool/32b053ac897a801ee62e0848b0bdcc40 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import os | |
import logging | |
import random | |
from datasets import load_dataset | |
class QuantAutoGPTQ: | |
def __init__(self, model_name_or_path, output_dir, dataset, | |
num_samples=128, trust_remote_code=False, cache_examples=True, | |
use_fast=True, use_triton=False, bits=[4], group_size=[128], damp=[0.01], | |
desc_act=[False], dtype='float16', seqlen=2048, batch_size=1, stop_file=None, | |
make_folder=False, GPU=0, cuda_alloc_conf=None): | |
self.pretrained_model_dir = model_name_or_path | |
self.output_dir_base = output_dir | |
self.dataset = dataset | |
self.num_samples = num_samples | |
self.trust_remote_code = trust_remote_code | |
self.cache_examples = cache_examples | |
self.use_fast = use_fast | |
self.use_triton = use_triton | |
def check_list(item): | |
return item if isinstance(item, list) else [item] | |
self.bits = check_list(bits) | |
self.group_size = check_list(group_size) | |
self.desc_act = check_list(desc_act) | |
self.damp = check_list(damp) | |
self.dtype = dtype | |
self.seqlen = seqlen | |
self.batch_size = batch_size | |
self.stop_file = stop_file | |
self.make_folder = make_folder | |
self.logger = logging.getLogger(__name__) | |
self.logger.propagate = True | |
from transformers import AutoTokenizer | |
self.logger.info("Loading tokenizer") | |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model_dir, | |
use_fast=self.use_fast, | |
trust_remote_code=self.trust_remote_code) | |
#TODO: Add support for other datasets and make this more generic | |
def get_wikitext2(self): | |
import numpy as np | |
import torch | |
wikidata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') | |
wikilist = [' \n' if s == '' else s for s in wikidata['text'] ] | |
text = ''.join(wikilist) | |
self.logger.info("Tokenising wikitext2") | |
trainenc = self.tokenizer(text, return_tensors='pt') | |
random.seed(0) | |
np.random.seed(0) | |
torch.random.manual_seed(0) | |
traindataset = [] | |
traindataset = [] | |
for _ in range(self.num_samples): | |
i = random.randint(0, trainenc.input_ids.shape[1] - self.seqlen - 1) | |
j = i + self.seqlen | |
inp = trainenc.input_ids[:, i:j] | |
attention_mask = torch.ones_like(inp) | |
traindataset.append({'input_ids':inp,'attention_mask': attention_mask}) | |
return traindataset | |
def get_c4(self): | |
import numpy as np | |
import torch | |
traindata = load_dataset( | |
'allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False | |
) | |
trainloader = [] | |
for _ in range(self.num_samples): | |
while True: | |
i = random.randint(0, len(traindata) - 1) | |
trainenc = self.tokenizer(traindata[i]['text'], return_tensors='pt') | |
if trainenc.input_ids.shape[1] >= self.seqlen: | |
break | |
i = random.randint(0, trainenc.input_ids.shape[1] - self.seqlen - 1) | |
j = i + self.seqlen | |
inp = trainenc.input_ids[:, i:j] | |
attention_mask = torch.ones_like(inp) | |
trainloader.append({'input_ids':inp,'attention_mask': attention_mask}) | |
return trainloader | |
def quantize(self, output_dir, traindataset, bits, group_size, desc_act, damp): | |
# Hide the super annoying bitsandbytes loading message. We don't even use BnB but I don't know if I can stop it loading entirely. | |
os.environ['BITSANDBYTES_NOWELCOME'] = '1' | |
# We only import Torch and AutoGPTQ when needed, so that earlier set env vars will affect them. | |
import torch | |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
quantize_config = BaseQuantizeConfig( | |
bits=bits, | |
group_size=group_size, | |
desc_act=desc_act, | |
damp_percent=damp | |
) | |
if self.dtype == 'float16': | |
torch_dtype = torch.float16 | |
elif self.dtype == 'float32': | |
torch_dtype = torch.float32 | |
elif self.dtype == 'bfloat16': | |
torch_dtype = torch.bfloat16 | |
else: | |
raise ValueError(f"Unsupported dtype: {self.dtype}") | |
self.logger.info(f"Loading model from {self.pretrained_model_dir} with trust_remote_code={self.trust_remote_code} and dtype={torch_dtype}") | |
model = AutoGPTQForCausalLM.from_pretrained(self.pretrained_model_dir, quantize_config=quantize_config, | |
low_cpu_mem_usage=True, torch_dtype=torch_dtype, trust_remote_code=self.trust_remote_code) | |
self.logger.info(f"Starting quantization to {output_dir} with use_triton={self.use_triton}") | |
start_time = time.time() | |
model.quantize(traindataset, use_triton=self.use_triton, batch_size=self.batch_size, cache_examples_on_gpu=self.cache_examples) | |
self.logger.info(f"Time to quantize model at {output_dir} with use_triton={self.use_triton}: {time.time() - start_time:.2f}") | |
self.logger.info(f"Saving quantized model to {output_dir}") | |
model.save_quantized(output_dir, use_safetensors=True) | |
self.logger.info("Done.") | |
def run_quantization(self): | |
if self.dataset == 'wikitext': | |
traindataset = self.get_wikitext2() | |
elif self.dataset == 'c4': | |
traindataset = self.get_c4() | |
else: | |
self.logger.error(f"Unsupported dataset: {self.dataset}") | |
raise ValueError(f"Unsupported dataset: {self.dataset}") | |
abort = False | |
iterations=[] | |
for bits in self.bits: | |
for group_size in self.group_size: | |
for desc_act in self.desc_act: | |
for damp in self.damp: | |
desc_act = desc_act == 1 and True or False | |
iterations.append({"bits": bits, "group_size": group_size, "desc_act": desc_act, "damp": damp}) | |
num_iters = len(iterations) | |
if num_iters > 1: | |
logger.info(f"Starting {num_iters} quantizations.") | |
count=1 | |
for iteration in iterations: | |
if abort: | |
break | |
if self.stop_file is not None and os.path.exists(self.stop_file): | |
self.logger.info(f"Stopping as {self.stop_file} exists") | |
abort = True | |
break | |
bits = iteration['bits'] | |
group_size = iteration['group_size'] | |
desc_act = iteration['desc_act'] | |
damp = iteration['damp'] | |
try: | |
if self.make_folder: | |
output_dir = os.path.join(self.output_dir_base, f"{bits}bits-{group_size}g-desc_act_{desc_act}-damp_{damp}") | |
else: | |
output_dir = self.output_dir_base | |
os.makedirs(output_dir, exist_ok=True) | |
try: | |
if num_iters > 1: | |
self.logger.info(f"Starting quantization {count}/{num_iters}") | |
self.logger.info(f"Quantising with bits={bits} group_size={group_size} desc_act={desc_act} damp={damp} to {output_dir}") | |
self.quantize(output_dir, traindataset, bits, group_size, desc_act, damp) | |
except KeyboardInterrupt: | |
logger.error(f"Aborted. Will delete {output_dir}") | |
os.rmdir(output_dir) | |
abort = True | |
except: | |
raise | |
finally: | |
count += 1 | |
if __name__ == "__main__": | |
import argparse | |
logger = logging.getLogger() | |
logging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", | |
level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S") | |
parser = argparse.ArgumentParser(description='AutoGPTQ quantize') | |
parser.add_argument('pretrained_model_dir', type=str, help='Repo name') | |
parser.add_argument('output_dir_base', type=str, help='Output base folder') | |
parser.add_argument('dataset', type=str, help='Quantisation dataset') | |
parser.add_argument('--num_samples', type=int, default=128, help='Number of dataset samples') | |
parser.add_argument('--trust_remote_code', action="store_true", help='Trust remote code') | |
parser.add_argument('--cache_examples', type=int, default=1, help='Cache examples on GPU') | |
parser.add_argument('--use_fast', action="store_true", help='Use fast tokenizer') | |
parser.add_argument('--use_triton', action="store_true", help='Use Triton for quantization') | |
parser.add_argument('--bits', type=int, nargs='+', default=[4], help='Quantize bit(s)') | |
parser.add_argument('--group_size', type=int, nargs='+', default=[128], help='Quantize group size(s)') | |
parser.add_argument('--damp', type=float, nargs='+', default=[0.01], help='Quantize damp_percent(s)') | |
parser.add_argument('--desc_act', type=int, nargs='+', default=[0], help='Quantize desc_act(s) - 1 = True, 0 = False') | |
parser.add_argument('--dtype', type=str, choices=['float16', 'float32', 'bfloat16'], default='float16', help='Unquantised model dtype') | |
parser.add_argument('--seqlen', type=int, default=2048, help='Model sequence length') | |
parser.add_argument('--batch_size', type=int, default=1, help='Quantize batch size for processing dataset samples') | |
parser.add_argument('--stop_file', type=str, help='Filename to look for to stop inference, specific to this instance') | |
parser.add_argument('--make_folders', action="store_true", help='Make folders for each quantization using params in folder name') | |
args = parser.parse_args() | |
quantizer = QuantAutoGPTQ(args.pretrained_model_dir, | |
args.output_dir_base, | |
args.dataset, | |
num_samples=args.num_samples, | |
trust_remote_code=args.trust_remote_code, | |
cache_examples=args.cache_examples, | |
use_fast=args.use_fast, | |
use_triton=args.use_triton, | |
bits=args.bits, | |
group_size=args.group_size, | |
desc_act=args.desc_act, | |
damp=args.damp, | |
dtype=args.dtype, | |
seqlen=args.seqlen, | |
batch_size=args.batch_size, | |
stop_file=args.stop_file, | |
make_folder=args.make_folders) | |
quantizer.run_quantization() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment