-
-
Save wangg12/e7a93f88c2f691b8036c36fe856d2279 to your computer and use it in GitHub Desktop.
Tensorflow tutorial "Deep MNIST for Experts"
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import print_function | |
| from tensorflow.examples.tutorials.mnist import input_data | |
| mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
| import tensorflow as tf | |
| def weight_variable(shape): | |
| initial = tf.truncated_normal(shape, stddev=0.1) | |
| return tf.Variable(initial) | |
| def bias_variable(shape): | |
| initial = tf.constant(0.1, shape=shape) | |
| return tf.Variable(initial) | |
| def conv2d(x, W): | |
| return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') | |
| def max_pool_2x2(x): | |
| return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], | |
| strides=[1, 2, 2, 1], padding='SAME') | |
| # Input layer | |
| x = tf.placeholder(tf.float32, [None, 784], name='x') | |
| y_ = tf.placeholder(tf.float32, [None, 10], name='y_') | |
| x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
| # Convolutional layer 1 | |
| W_conv1 = weight_variable([5, 5, 1, 32]) | |
| b_conv1 = bias_variable([32]) | |
| h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) | |
| h_pool1 = max_pool_2x2(h_conv1) | |
| # Convolutional layer 2 | |
| W_conv2 = weight_variable([5, 5, 32, 64]) | |
| b_conv2 = bias_variable([64]) | |
| h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) | |
| h_pool2 = max_pool_2x2(h_conv2) | |
| # Fully connected layer 1 | |
| h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) | |
| W_fc1 = weight_variable([7 * 7 * 64, 1024]) | |
| b_fc1 = bias_variable([1024]) | |
| h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) | |
| # Dropout | |
| keep_prob = tf.placeholder(tf.float32) | |
| h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) | |
| # Fully connected layer 2 (Output layer) | |
| W_fc2 = weight_variable([1024, 10]) | |
| b_fc2 = bias_variable([10]) | |
| y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2, name='y') | |
| # Evaluation functions | |
| cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
| correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy') | |
| # Training algorithm | |
| train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) | |
| # Training steps | |
| with tf.Session() as sess: | |
| sess.run(tf.initialize_all_variables()) | |
| max_steps = 1000 | |
| for step in range(max_steps): | |
| batch_xs, batch_ys = mnist.train.next_batch(50) | |
| if (step % 100) == 0: | |
| print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) | |
| sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5}) | |
| print(max_steps, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment