Last active
December 18, 2022 20:54
-
-
Save wangg12/f11258583ffcc4728eb71adc0f38e832 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from graphviz import Digraph | |
from torch.autograd import Variable | |
import torch | |
def make_dot(var, params=None): | |
if params is not None: | |
assert isinstance(params.values()[0], Variable) | |
param_map = {id(v): k for k, v in params.items()} | |
node_attr = dict(style="filled", shape="box", align="left", fontsize="12", ranksep="0.1", height="0.2") | |
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) | |
seen = set() | |
def size_to_str(size): | |
return "(" + (", ").join(["%d" % v for v in size]) + ")" | |
def add_nodes(var): | |
if var not in seen: | |
if torch.is_tensor(var): | |
dot.node(str(id(var)), size_to_str(var.size()), fillcolor="orange") | |
dot.edge(str(id(var.grad_fn)), str(id(var))) | |
var = var.grad_fn | |
if hasattr(var, "variable"): | |
u = var.variable | |
name = param_map[id(u)] if params is not None else "" | |
node_name = "%s\n %s" % (name, size_to_str(u.size())) | |
dot.node(str(id(var)), node_name, fillcolor="lightblue") | |
else: | |
dot.node(str(id(var)), str(type(var).__name__)) | |
seen.add(var) | |
if hasattr(var, "next_functions"): | |
for u in var.next_functions: | |
if u[0] is not None: | |
dot.edge(str(id(u[0])), str(id(var))) | |
add_nodes(u[0]) | |
if hasattr(var, "saved_tensors"): | |
for t in var.saved_tensors: | |
dot.edge(str(id(t)), str(id(var))) | |
add_nodes(t) | |
add_nodes(var) | |
return dot | |
if __name__ == "__main__": | |
import torchvision.models as models | |
inputs = torch.randn(1, 3, 224, 224) | |
resnet18 = models.resnet18() | |
y = resnet18(inputs) | |
# print(y) | |
g = make_dot(y) | |
g.view() |
def make_dot(var, params=None):
""" Produces Graphviz representation of PyTorch autograd graph
Blue nodes are the Variables that require grad, orange are Tensors
saved for backward in torch.autograd.Function
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
if params is not None:
assert isinstance(params.values()[0], Variable)
param_map = {id(v): k for k, v in params.items()}node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s\n %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot
Author:gyguo95
Ref.:https://blog.csdn.net/gyguo95/article/details/78821617
I updated a bit.
from graphviz import Digraph
from torch.autograd import Variable
import torch
def make_dot(var, params=None):
if params is not None:
assert isinstance(params.values()[0], Variable)
param_map = {id(v): k for k, v in params.items()}
node_attr = dict(style='filled',
shape='box',
align='left',
fontsize='12',
ranksep='0.1',
height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set()
def size_to_str(size):
return '(' + (', ').join(['%d' % v for v in size]) + ')'
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
dot.edge(str(id(var.grad_fn)), str(id(var)))
var = var.grad_fn
if hasattr(var, 'variable'):
u = var.variable
name = param_map[id(u)] if params is not None else ''
node_name = '%s\n %s' % (name, size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(var)
return dot
Thanks. I updated the script according to yours.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I got this error