Created
February 17, 2023 22:26
-
-
Save wangkuiyi/a0dfb8026a567f9942c75c58167f2f63 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%1140 = stablehlo.broadcast_in_dim %1139, dims = [] : (tensor<i32>) -> tensor<500x256xi32> | |
%1141 = stablehlo.multiply %1136, %1140 : tensor<500x256xi32> | |
%1142 = stablehlo.constant dense<999993> : tensor<i64> | |
%1143 = call @jit__train_step_kernel$remainder_4(%1141, %1142) : (tensor<500x256xi32>, tensor<i64>) -> tensor<500x256xi32> | |
%1144 = stablehlo.broadcast_in_dim %arg9, dims = [1] : (tensor<256xi32>) -> tensor<1x256xi32> | |
%1145 = stablehlo.broadcast_in_dim %1144, dims = [0, 1] : (tensor<1x256xi32>) -> tensor<500x256xi32> | |
%1146 = stablehlo.add %1143, %1145 : tensor<500x256xi32> | |
%1147 = stablehlo.constant dense<0> : tensor<i32> | |
%1148 = stablehlo.broadcast_in_dim %1147, dims = [] : (tensor<i32>) -> tensor<500x256xi32> | |
%1149 = stablehlo.compare LT, %1146, %1148, SIGNED : (tensor<500x256xi32>, tensor<500x256xi32>) -> tensor<500x256xi1> | |
%1150 = stablehlo.constant dense<1000000> : tensor<i32> | |
%1151 = stablehlo.broadcast_in_dim %1150, dims = [] : (tensor<i32>) -> tensor<500x256xi32> | |
%1152 = stablehlo.add %1146, %1151 : tensor<500x256xi32> | |
%1153 = stablehlo.select %1149, %1152, %1146 : tensor<500x256xi1>, tensor<500x256xi32> | |
%1154 = stablehlo.broadcast_in_dim %1153, dims = [0, 1] : (tensor<500x256xi32>) -> tensor<500x256x1xi32> | |
%1155 = "stablehlo.gather"(%arg2, %1154) {dimension_numbers = #stablehlo.gather<collapsed_slice_dims = [0], start_index_map = [0], index_vector_dim = 2>, in | |
%1156 = stablehlo.transpose %1155, dims = [1, 0] : (tensor<500x256xf32>) -> tensor<256x500xf32> | |
%1157 = "stablehlo.dot_general"(%54, %1156) {dot_dimension_numbers = #stablehlo.dot<lhs_contracting_dimensions = [1], rhs_contracting_dimensions = [0]>, pre | |
%1158 = stablehlo.reshape %1107 : (tensor<512xf32>) -> tensor<512x1xf32> | |
%1159 = stablehlo.concatenate %1158, %1157, dim = 1 : (tensor<512x1xf32>, tensor<512x500xf32>) -> tensor<512x501xf32> | |
%1160:3 = call @jit__train_step_kernel$log_softmax(%1159) : (tensor<512x501xf32>) -> (tensor<512x501xf32>, tensor<512x1xf32>, tensor<512x501xf32>) | |
%1161 = stablehlo.constant dense<0> : tensor<i32> | |
%1162 = stablehlo.broadcast_in_dim %1161, dims = [] : (tensor<i32>) -> tensor<1xi32> | |
%1163 = "stablehlo.gather"(%1160#0, %1162) {dimension_numbers = #stablehlo.gather<offset_dims = [0], collapsed_slice_dims = [1], start_index_map = [1]>, ind | |
%1164 = stablehlo.constant dense<0.000000e+00> : tensor<f32> | |
%1165 = stablehlo.reduce(%1163 init: %1164) across dimensions = [0] : (tensor<512xf32>, tensor<f32>) -> tensor<f32> | |
reducer(%arg10: tensor<f32>, %arg11: tensor<f32>) { | |
%1480 = stablehlo.add %arg10, %arg11 : tensor<f32> | |
stablehlo.return %1480 : tensor<f32> | |
} | |
%1166 = stablehlo.constant dense<5.120000e+02> : tensor<f32> | |
%1167 = stablehlo.divide %1165, %1166 : tensor<f32> | |
%1168 = stablehlo.negate %1167 : tensor<f32> | |
%1169 = stablehlo.constant dense<1.000000e+00> : tensor<f32> | |
%1170 = stablehlo.negate %1169 : tensor<f32> | |
%1171 = stablehlo.constant dense<5.120000e+02> : tensor<f32> | |
%1172 = stablehlo.divide %1170, %1171 : tensor<f32> | |
%1173 = stablehlo.broadcast_in_dim %1172, dims = [] : (tensor<f32>) -> tensor<512xf32> | |
%1174 = stablehlo.constant dense<0.000000e+00> : tensor<f32> | |
%1175 = stablehlo.reduce(%1173 init: %1174) across dimensions = [] : (tensor<512xf32>, tensor<f32>) -> tensor<512xf32> | |
reducer(%arg10: tensor<f32>, %arg11: tensor<f32>) { | |
%1480 = stablehlo.add %arg10, %arg11 : tensor<f32> | |
stablehlo.return %1480 : tensor<f32> | |
} | |
%1176 = stablehlo.constant dense<0.000000e+00> : tensor<f32> | |
%1177 = stablehlo.broadcast_in_dim %1176, dims = [] : (tensor<f32>) -> tensor<512x501xf32> | |
%1178 = "stablehlo.scatter"(%1177, %1162, %1175) ({ | |
^bb0(%arg10: tensor<f32>, %arg11: tensor<f32>): | |
%1480 = stablehlo.add %arg10, %arg11 : tensor<f32> | |
stablehlo.return %1480 : tensor<f32> | |
}) {indices_are_sorted = true, scatter_dimension_numbers = #stablehlo.scatter<update_window_dims = [0], inserted_window_dims = [1], scatter_dims_to_operand_ | |
%1179 = call @jit__train_step_kernel$log_softmax_6(%1160#1, %1160#2, %1178) : (tensor<512x1xf32>, tensor<512x501xf32>, tensor<512x501xf32>) -> tensor<512x50 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment