Last active
June 14, 2024 10:00
-
-
Save wannaphong/2b73c33f898816b18ead38b176e6a5d0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from easydel import ( | |
TrainArguments, | |
AutoEasyDeLModelForCausalLM, | |
EasyDeLOptimizers, | |
EasyDeLSchedulers, | |
EasyDeLGradientCheckPointers, | |
SFTTrainer, | |
conversations_formatting_function # i have added this one for newcomers so if they | |
# don't know what's going on they can use this pre created prompter | |
) | |
from datasets import load_dataset | |
import flax | |
from jax import numpy as jnp | |
from transformers import AutoTokenizer | |
from jax.sharding import PartitionSpec | |
import easydel as ed | |
import jax | |
sharding_axis_dims = (1, -1, 1, 1) | |
max_length = 2048 | |
input_shape = (32, max_length) # since your using TPUv4-64 | |
huggingface_repo_id_or_path = "numfa/open_llama_3b_thai" | |
dtype = jnp.bfloat16 | |
block_size = 512 | |
attn_mechanism = "sharded_vanilla" # or flash or sharded_vanilla ... | |
partition_axis = ed.PartitionAxis() | |
model, params = ed.AutoEasyDeLModelForCausalLM.from_pretrained( | |
huggingface_repo_id_or_path, | |
device = jax.devices('cpu')[0], | |
input_shape = input_shape, | |
device_map = "auto", | |
auto_shard_params=False, | |
sharding_axis_dims = sharding_axis_dims, | |
verbose_params=True, | |
config_kwargs=dict( | |
use_scan_mlp=False, | |
attn_mechanism=attn_mechanism, | |
partition_axis=partition_axis | |
), | |
partition_axis=partition_axis | |
) | |
config = model.config | |
rules = ( | |
('model/embed_tokens/embedding', PartitionSpec("tp",('fsdp', 'sp'),)), | |
('self_attn/(q_proj|k_proj|v_proj)/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('self_attn/o_proj/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('mlp/gate_proj/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('mlp/down_proj/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('mlp/up_proj/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('input_layernorm/kernel', PartitionSpec(None,)), | |
('post_attention_layernorm/kernel', PartitionSpec(None,)), | |
('model/norm/kernel', PartitionSpec(None,)), | |
('lm_head/kernel', PartitionSpec(('fsdp', 'sp'),"tp")), | |
('.*', PartitionSpec(('fsdp', 'sp'),)) | |
) | |
config.get_partition_rules = lambda _: rules | |
config.add_basic_configurations( | |
attn_mechanism=attn_mechanism, | |
shard_attention_computation=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
huggingface_repo_id_or_path, | |
trust_remote_code=True | |
) | |
if tokenizer.pad_token == None: | |
tokenizer.pad_token = tokenizer.eos_token | |
configs_to_initialize_model_class = { | |
"config": model.config, | |
"dtype": jnp.bfloat16, | |
"param_dtype": jnp.bfloat16, | |
"input_shape": input_shape | |
} | |
train_arguments = TrainArguments( | |
model_class=type(model), | |
model_name="ol-sft", | |
custom_rule=config.get_partition_rules(True), # here you use custom partition_rule for model. | |
num_train_epochs=3, | |
configs_to_initialize_model_class=configs_to_initialize_model_class, | |
learning_rate=5e-5, | |
learning_rate_end=1e-6, | |
optimizer=EasyDeLOptimizers.ADAMW, | |
scheduler=EasyDeLSchedulers.WARM_UP_COSINE, | |
weight_decay=0.01, | |
total_batch_size=64, | |
max_training_steps=None, # None to let trainer Decide | |
do_train=True, | |
do_eval=False, # it's optional but supported | |
backend="tpu", # default backed is set to cpu, so you must define you want to use tpu cpu or gpu | |
max_sequence_length=max_length, # Note that you have to change this in the model config too | |
gradient_checkpointing=EasyDeLGradientCheckPointers.NOTHING_SAVEABLE, | |
sharding_array=sharding_axis_dims, # the way to shard model across gpu,cpu or TPUs using sharding array (1, -1, 1, 1) | |
# everything training will be in sequence and model parallel automatic and share data between devices | |
remove_ckpt_after_load=True, | |
gradient_accumulation_steps=8, | |
loss_re_mat="", | |
dtype=jnp.bfloat16, | |
do_shard_fns=True, | |
use_wandb=True, | |
track_memory=False # Install GO lang and set this to true if you want track memory | |
) | |
def prompter(sample): | |
return [conversations_formatting_function(tokenizer, messages_field="messages")(sample)] | |
train_dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft") | |
trainer = SFTTrainer( | |
arguments=train_arguments, | |
train_dataset=train_dataset, | |
eval_dataset=None, # we don't have eval dataset rn :) | |
tokenizer=tokenizer, | |
dataset_text_field=None, | |
formatting_func=prompter, | |
packing=True, | |
num_of_sequences=max_length, | |
) | |
output = trainer.train(flax.core.FrozenDict({"params": params})) | |
print(f"Hey ! , here's where your model saved {output.checkpoint_path}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment