Created
October 29, 2015 05:19
-
-
Save warmwaffles/6fb6786be7c86ed51fce to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Generic hashmap manipulation functions | |
* SEE: http://elliottback.com/wp/hashmap-implementation-in-c/ | |
*/ | |
#ifndef __HASHMAP_H__ | |
#define __HASHMAP_H__ | |
#define MAP_MISSING -3 /* No such element */ | |
#define MAP_FULL -2 /* Hashmap is full */ | |
#define MAP_OMEM -1 /* Out of Memory */ | |
#define MAP_OK 0 /* OK */ | |
/* | |
* any_t is a pointer. This allows you to put arbitrary structures in | |
* the hashmap. | |
*/ | |
typedef void *any_t; | |
/* | |
* PFany is a pointer to a function that can take two any_t arguments | |
* and return an integer. Returns status code.. | |
*/ | |
typedef int (*PFany)(any_t, any_t); | |
/* | |
* map_t is a pointer to an internally maintained data structure. | |
* Clients of this package do not need to know how hashmaps are | |
* represented. They see and manipulate only map_t's. | |
*/ | |
typedef any_t map_t; | |
/* | |
* Return an empty hashmap. Returns NULL if empty. | |
*/ | |
extern map_t hashmap_new(); | |
/* | |
* Iteratively call f with argument (item, data) for | |
* each element data in the hashmap. The function must | |
* return a map status code. If it returns anything other | |
* than MAP_OK the traversal is terminated. f must | |
* not reenter any hashmap functions, or deadlock may arise. | |
*/ | |
extern int hashmap_iterate(map_t in, PFany f, any_t item); | |
/* | |
* Add an element to the hashmap. Return MAP_OK or MAP_OMEM. | |
*/ | |
extern int hashmap_put(map_t in, int key, any_t value); | |
/* | |
* Get an element from the hashmap. Return MAP_OK or MAP_MISSING. | |
*/ | |
extern int hashmap_get(map_t in, int key, any_t *arg); | |
/* | |
* Remove an element from the hashmap. Return MAP_OK or MAP_MISSING. | |
*/ | |
extern int hashmap_remove(map_t in, int key); | |
/* | |
* Get any element. Return MAP_OK or MAP_MISSING. | |
* remove - should the element be removed from the hashmap | |
*/ | |
extern int hashmap_get_one(map_t in, any_t *arg, int remove); | |
/* | |
* Free the hashmap | |
*/ | |
extern void hashmap_free(map_t in); | |
/* | |
* Get the current size of a hashmap | |
*/ | |
extern int hashmap_length(map_t in); | |
#endif __HASHMAP_H__ | |
HashMap.c: | |
/* | |
* Generic map implementation. This class is thread-safe. | |
* free() must be invoked when only one thread has access to the hashmap. | |
*/ | |
#include < stdlib.h > | |
#include < stdio.h > | |
#include < minithreads/hashmap.h > | |
#include < minithreads/synch.h > | |
#define INITIAL_SIZE 1024 | |
// We need to keep keys and values | |
typedef struct _hashmap_element{ | |
int key; | |
int in_use; | |
any_t data; | |
} hashmap_element; | |
// A hashmap has some maximum size and current size, | |
// as well as the data to hold. | |
typedef struct _hashmap_map{ | |
int table_size; | |
int size; | |
hashmap_element *data; | |
semaphore_t lock; | |
} hashmap_map; | |
/* | |
* Return an empty hashmap, or NULL on failure. | |
*/ | |
map_t hashmap_new() { | |
hashmap_map* m = (hashmap_map*) malloc(sizeof(hashmap_map)); | |
if(!m) goto err; | |
m->data = (hashmap_element*) calloc(INITIAL_SIZE, sizeof(hashmap_element)); | |
if(!m->data) goto err; | |
m->lock = (semaphore_t) semaphore_create(); | |
if(!m->lock) goto err; | |
semaphore_initialize(m->lock, 1); | |
m->table_size = INITIAL_SIZE; | |
m->size = 0; | |
return m; | |
err: | |
if (m) | |
hashmap_free(m); | |
return NULL; | |
} | |
/* | |
* Hashing function for an integer | |
*/ | |
unsigned int hashmap_hash_int(hashmap_map * m, unsigned int key){ | |
/* Robert Jenkins' 32 bit Mix Function */ | |
key += (key << 12); | |
key ^= (key >> 22); | |
key += (key << 4); | |
key ^= (key >> 9); | |
key += (key << 10); | |
key ^= (key >> 2); | |
key += (key << 7); | |
key ^= (key >> 12); | |
/* Knuth's Multiplicative Method */ | |
key = (key >> 3) * 2654435761; | |
return key % m->table_size; | |
} | |
/* | |
* Return the integer of the location in data | |
* to store the point to the item, or MAP_FULL. | |
*/ | |
int hashmap_hash(map_t in, int key){ | |
int curr; | |
int i; | |
/* Cast the hashmap */ | |
hashmap_map* m = (hashmap_map *) in; | |
/* If full, return immediately */ | |
if(m->size == m->table_size) return MAP_FULL; | |
/* Find the best index */ | |
curr = hashmap_hash_int(m, key); | |
/* Linear probling */ | |
for(i = 0; i< m->table_size; i++){ | |
if(m->data[curr].in_use == 0) | |
return curr; | |
if(m->data[curr].key == key && m->data[curr].in_use == 1) | |
return curr; | |
curr = (curr + 1) % m->table_size; | |
} | |
return MAP_FULL; | |
} | |
/* | |
* Doubles the size of the hashmap, and rehashes all the elements | |
*/ | |
int hashmap_rehash(map_t in){ | |
int i; | |
int old_size; | |
hashmap_element* curr; | |
/* Setup the new elements */ | |
hashmap_map *m = (hashmap_map *) in; | |
hashmap_element* temp = (hashmap_element *) | |
calloc(2 * m->table_size, sizeof(hashmap_element)); | |
if(!temp) return MAP_OMEM; | |
/* Update the array */ | |
curr = m->data; | |
m->data = temp; | |
/* Update the size */ | |
old_size = m->table_size; | |
m->table_size = 2 * m->table_size; | |
m->size = 0; | |
/* Rehash the elements */ | |
for(i = 0; i < old_size; i++){ | |
int status = hashmap_put(m, curr[i].key, curr[i].data); | |
if (status != MAP_OK) | |
return status; | |
} | |
free(curr); | |
return MAP_OK; | |
} | |
/* | |
* Add a pointer to the hashmap with some key | |
*/ | |
int hashmap_put(map_t in, int key, any_t value){ | |
int index; | |
hashmap_map* m; | |
/* Cast the hashmap */ | |
m = (hashmap_map *) in; | |
/* Lock for concurrency */ | |
semaphore_P(m->lock); | |
/* Find a place to put our value */ | |
index = hashmap_hash(in, key); | |
while(index == MAP_FULL){ | |
if (hashmap_rehash(in) == MAP_OMEM) { | |
semaphore_V(m->lock); | |
return MAP_OMEM; | |
} | |
index = hashmap_hash(in, key); | |
} | |
/* Set the data */ | |
m->data[index].data = value; | |
m->data[index].key = key; | |
m->data[index].in_use = 1; | |
m->size++; | |
/* Unlock */ | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
/* | |
* Get your pointer out of the hashmap with a key | |
*/ | |
int hashmap_get(map_t in, int key, any_t *arg){ | |
int curr; | |
int i; | |
hashmap_map* m; | |
/* Cast the hashmap */ | |
m = (hashmap_map *) in; | |
/* Lock for concurrency */ | |
semaphore_P(m->lock); | |
/* Find data location */ | |
curr = hashmap_hash_int(m, key); | |
/* Linear probing, if necessary */ | |
for(i = 0; i< m->table_size; i++){ | |
if(m->data[curr].key == key && m->data[curr].in_use == 1){ | |
*arg = (int *) (m->data[curr].data); | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
curr = (curr + 1) % m->table_size; | |
} | |
*arg = NULL; | |
/* Unlock */ | |
semaphore_V(m->lock); | |
/* Not found */ | |
return MAP_MISSING; | |
} | |
/* | |
* Get a random element from the hashmap | |
*/ | |
int hashmap_get_one(map_t in, any_t *arg, int remove){ | |
int i; | |
hashmap_map* m; | |
/* Cast the hashmap */ | |
m = (hashmap_map *) in; | |
/* On empty hashmap return immediately */ | |
if (hashmap_length(m) <= 0) | |
return MAP_MISSING; | |
/* Lock for concurrency */ | |
semaphore_P(m->lock); | |
/* Linear probing */ | |
for(i = 0; i< m->table_size; i++) | |
if(m->data[i].in_use != 0){ | |
*arg = (any_t) (m->data[i].data); | |
if (remove) { | |
m->data[i].in_use = 0; | |
m->size--; | |
} | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
/* Unlock */ | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
/* | |
* Iterate the function parameter over each element in the hashmap. The | |
* additional any_t argument is passed to the function as its first | |
* argument and the hashmap element is the second. | |
*/ | |
int hashmap_iterate(map_t in, PFany f, any_t item) { | |
int i; | |
/* Cast the hashmap */ | |
hashmap_map* m = (hashmap_map*) in; | |
/* On empty hashmap, return immediately */ | |
if (hashmap_length(m) <= 0) | |
return MAP_MISSING; | |
/* Lock for concurrency */ | |
semaphore_P(m->lock); | |
/* Linear probing */ | |
for(i = 0; i< m->table_size; i++) | |
if(m->data[i].in_use != 0) { | |
any_t data = (any_t) (m->data[i].data); | |
int status = f(item, data); | |
if (status != MAP_OK) { | |
semaphore_V(m->lock); | |
return status; | |
} | |
} | |
/* Unlock */ | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
/* | |
* Remove an element with that key from the map | |
*/ | |
int hashmap_remove(map_t in, int key){ | |
int i; | |
int curr; | |
hashmap_map* m; | |
/* Cast the hashmap */ | |
m = (hashmap_map *) in; | |
/* Lock for concurrency */ | |
semaphore_P(m->lock); | |
/* Find key */ | |
curr = hashmap_hash_int(m, key); | |
/* Linear probing, if necessary */ | |
for(i = 0; i< m->table_size; i++){ | |
if(m->data[curr].key == key && m->data[curr].in_use == 1){ | |
/* Blank out the fields */ | |
m->data[curr].in_use = 0; | |
m->data[curr].data = NULL; | |
m->data[curr].key = 0; | |
/* Reduce the size */ | |
m->size--; | |
semaphore_V(m->lock); | |
return MAP_OK; | |
} | |
curr = (curr + 1) % m->table_size; | |
} | |
/* Unlock */ | |
semaphore_V(m->lock); | |
/* Data not found */ | |
return MAP_MISSING; | |
} | |
/* Deallocate the hashmap */ | |
void hashmap_free(map_t in){ | |
hashmap_map* m = (hashmap_map*) in; | |
free(m->data); | |
semaphore_destroy(m->lock); | |
free(m); | |
} | |
/* Return the length of the hashmap */ | |
int hashmap_length(map_t in){ | |
hashmap_map* m = (hashmap_map *) in; | |
if(m != NULL) return m->size; | |
else return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment