Last active
May 14, 2024 02:29
-
-
Save wassname2/3cdad918633913bfc06761dc359f5219 to your computer and use it in GitHub Desktop.
time_chunking.py a good way to chunk time, in human readable chunks of decreasing size
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
def chunking_by_time(startTime: pd.Timestamp, endTime: pd.Timestamp, freqs=['Y', 'M', 'D']): | |
""" | |
How do we cache timespans? We want to take year chunks, then for the remainder months, and so on. | |
That way old data is cached in big chunks, and new data is rechunked as needed | |
```py | |
startTime = pd.to_datetime('2023-01-02 01:01') | |
endTime = pd.to_datetime('2024-04-06 05:55') | |
chunks = chunking_by_time(startTime, endTime, ['Y', 'M', 'D']) | |
> [Timestamp('2023-01-02 01:01:00'), | |
Timestamp('2023-12-31 00:00:00'), | |
Timestamp('2024-01-31 00:00:00'), | |
Timestamp('2024-02-29 00:00:00'), | |
Timestamp('2024-03-31 00:00:00'), | |
Timestamp('2024-04-01 00:00:00'), | |
Timestamp('2024-04-02 00:00:00'), | |
Timestamp('2024-04-03 00:00:00'), | |
Timestamp('2024-04-04 00:00:00'), | |
Timestamp('2024-04-05 00:00:00'), | |
Timestamp('2024-04-06 00:00:00'), | |
Timestamp('2024-04-06 01:01:00'), | |
Timestamp('2024-04-06 05:55')] | |
""" | |
# Create date range | |
date_range = pd.date_range(startTime, endTime) | |
# Create DataFrame | |
df = pd.DataFrame(date_range, columns=['date'], index=date_range) | |
groupers = [pd.Grouper(key='date', freq=f) for f in freqs] | |
groups = [startTime, endTime] # start with our first and last | |
for g in groupers: | |
grouped = df.groupby(g) | |
gs = list(dict(list(grouped)).keys()) | |
# only take the ones that are before our last ts | |
gs = [ts for ts in gs if ts<=df.index.max()] | |
groups += gs | |
df = df.loc[groups[-1]:] | |
gs = [ts for ts in gs if (ts<=df.index.max()) & (ts>=df.index.min())] | |
# dedup | |
groups = sorted(set(groups)) | |
return groups | |
# sanity checks | |
## should include start and end in bins | |
startTime = pd.to_datetime('2023-01-02 01:01') | |
endTime = pd.to_datetime('2024-04-06 05:55') | |
chunks = chunking_by_time(startTime, endTime, ['Y', 'M', 'D']) | |
chunks | |
## the last chunk should be different so we get fresh data | |
startTime = pd.to_datetime('2023-01-02 01:01') | |
endTime = pd.to_datetime('2024-04-06 05:55') | |
chunks = chunking_by_time(startTime, endTime, ['Y', 'M', 'D']) | |
chunks |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment